Bernstein Medical - Center for Hair Restoration - Graft Popping

Graft Popping

About Header Image
ARTAS Robotic System display monitor showing parameters for the creation of recipient sitesARTAS Robotic System display monitor showing parameters for the creation of recipient sites

New York, NY (PRWEB) — Robert M. Bernstein, M.D., F.A.A.D., A.B.H.R.S., founder of Bernstein Medical – Center for Hair Restoration, introduced new technology that allows the ARTAS Robotic System to accomplish a critical step in hair transplant surgery, the creation of recipient sites. Presenting at the 2nd ARTAS User Group Meeting, Dr. Bernstein previewed the recipient site creation technology that brings the robotic system one step closer to performing critical aspects of the labor-intensive, hair transplant procedure.

The ARTAS System is currently able to harvest intact follicular unit grafts from the permanent area in back of one’s scalp using precise robotic technology. This is the most difficult aspect of a follicular unit extraction hair transplant – the newer type of hair restoration procedure that avoids a linear scar in the back of the scalp. Now that site creation can also be done robotically, only one step remains – graft placement.

The ARTAS Robotic System maps the surgeon's hairline design onto a 3-D model of the patient's headThe ARTAS Robotic System maps the surgeon’s hairline design onto a 3-D model of the patient’s head

For the recipient site creation, the doctor first draws a hairline and other markings directly onto the patient’s scalp to delineate the surgical plan. Next, multiple photographs are taken and fed into software, called the ARTAS™ Hair Studio, which converts the images into a 3-D model of the actual patient. This computer model can be manipulated and saved for the patient’s procedure. Using the ARTAS™ Hair Studio software, the physician then specifies the angle, direction, density, and randomness of the recipient site incisions to create the most natural look. During the procedure, the robot uses image-guided technology to avoid existing hairs while it creates up to 1,500 recipient sites per hour. In performing recipient site creation, the robot automates a process that can be physically demanding and prone to human error.

On the advancement, Dr. Bernstein said:

“This development is a crucial step towards a robotic system that can perform every aspect of a hair transplant. A great deal of credit goes to the engineers of Restoration Robotics who have worked to make automated recipient site creation a reality. I am proud that this work not only improves hair transplants for patients, but adds to the increasingly important trend of using robotic technology in medicine.”

The site creation technology that Dr. Bernstein debuted at the ARTAS User Group Meeting; which was held in California (Laguna Niguel, CA) on February 7th and 8th, 2014; will be available to hair restoration physicians in the fall of 2014. Gabe Zingeratti Ph.D, head of R&D at Restoration Robotics, Inc., presented details of the technology, which was beta-tested at Bernstein Medical – Center for Hair Restoration. With the next generation ARTAS® Robotic System rolling out in the coming months, the focus of research will then be on the final phase of robotic hair transplantation, the robotic insertion of follicular unit grafts into recipient sites. This last step will take several more years to develop.

The ARTAS Robotic System, developed by Restoration Robotics, is currently in use by hair restoration physicians around the world to automate the extraction of grafts of skin and hair called follicular units.. Follicular units, which are natural groupings of one to four hair follicles, form the biological basis of the modern hair transplant procedure. Once extracted from the back of the patient’s scalp, the follicular unit grafts are then inserted into recipient sites in the balding area of the scalp where they grow hairs that are immune to the effects of common hair loss.

No stranger to innovative advances in hair transplant surgery, Dr. Bernstein introduced Follicular Unit Transplantation (FUT) to medical literature in a 1995 publication. FUT transformed hair transplants from the use of large grafts of skin and hair, known colloquially as “hair plugs,” to a more medically-oriented procedure that produces completely natural-appearing results. Dr. Bernstein with his colleague Dr. Bill Rassman again broke new ground with his 2002 publication that introduced the concept of Follicular Unit Extraction (FUE) to scientific literature. Dr. Bernstein was the first physician on the East Coast of the United Sates, and one of the first in the world, to use the ARTAS System to perform FUE using the new robotic technology.

About Robert M. Bernstein, M.D., F.A.A.D.

Dr. Robert M. Bernstein is a Clinical Professor of Dermatology at Columbia University and founder of Bernstein Medical – Center for Hair Restoration. His landmark scientific papers are considered seminal works in the field of hair transplant surgery. Other publications include textbook chapters on dermatologic surgery and books, like Hair Loss and Replacement for Dummies, aimed at the consumer audience. He has been selected as one of New York Magazine’s “Best Doctors” for fourteen consecutive years and has appeared as a hair loss and hair transplantation expert on The Oprah Winfrey Show, The Dr. Oz Show, Good Morning America, The Today Show, CBS News, Fox News, and The Discovery Channel. Dr. Bernstein has been interviewed or featured in articles in the New York Times, GQ Magazine, Men’s Health, Interview Magazine, Vogue, and others.

About Bernstein Medical – Center for Hair Restoration

Bernstein Medical – Center for Hair Restoration, founded in 2005, is a state-of-the-art facility and international referral center for the treatment of hair loss that is located in midtown Manhattan, New York City. Hair transplant surgery, hair repair surgery, and eyebrow restoration are performed using Dr. Bernstein’s pioneering techniques of Follicular Unit Transplantation (FUT) and Follicular Unit Extraction (FUE).

Posted by

New York, NY (PRWEB) — Robert M. Bernstein, M.D., F.A.A.D., A.B.H.R.S., a world-renowned hair transplant surgeon, presented a series of improvements to hair transplant procedures which use the ARTAS Robotic System for Follicular Unit Extraction (FUE). These updates include revisions to the FUE surgical protocol and technical adjustments to the robotic extraction system. He presented his refinements at the first user meeting held by the developers of the system; Restoration Robotics, Inc.; on September 14 – 16 in Denver, Colorado.

Dr. Bernstein receives recognition from Restoration RoboticsDr. Bernstein receives recognition from Restoration Robotics

Dr. Bernstein described his series of improvements in a lecture to an elite group of physicians who are among the first adopters in the industry of the image-guided, robotic-assisted system. The updates are designed to improve the results of FUE hair transplantation by enhancing both the surgical protocols of the procedure as well as the functionality of the robotic system. In FUE, small groups of one to four hairs, called follicular units, are extracted individually from the back and sides of the scalp and are then implanted into recipient sites, which are tiny holes that the surgeon creates in a balding area of the scalp.

Dr. Bernstein discussing robotic-assisted FUE at Restoration Robotics' first user meetingDr. Bernstein discussing robotic-assisted FUE at Restoration Robotics’ first user meeting

The most important update to the FUE procedure that Dr. Bernstein proposed is for surgeons to create recipient sites before they extract the grafts, rather than create the sites after grafts are extracted. Drawing on his decades of experience in hair transplantation, Dr. Bernstein developed this technique of “pre-making” recipient sites in order to maximize survival of the grafts during the hair transplant. Using this technique, extracted grafts are outside the body for a shorter duration of time. It also minimizes instances of “popping,” in which grafts are exposed to desiccation (drying) and hypoxia (low oxygen) before they are inserted back into the scalp. By “pre-making” the recipient sites, these harmful factors are mitigated and a greater number of the grafts grow into viable, hair-producing follicular units. Dr. Bernstein encourages surgeons to use this technique on all FUE procedures, whether using manual methods or robotic instrumentation.

When asked to comment on his improvements to the robotic FUE procedure, Dr. Bernstein said:

“It was fortuitous timing that the ARTAS Robot became available just as I was developing my refinements to the FUE procedure. The combination of the automated robot for graft extraction with the technique of pre-making recipient sites has led to a significant improvement in hair transplant surgery.”

Dr. Bernstein is the founder of Bernstein Medical – Center for Hair Restoration, and he is recognized world-wide for his innovative work in the treatment of hair loss. He is among the first hair transplant surgeons in North America to utilize the ARTAS Robot for FUE in his practice.

Being an early adopter of the advanced follicular unit extraction system has enabled him to work with Restoration Robotics to refine it to his exacting standards. Dr. Bernstein has, again, put his fingerprints on a revolutionary upgrade to the hair transplantation industry. He was the first to describe FUT and FUE procedures in the medical literature, in 1995 and 2002 respectively. In contrast to FUE, where follicular units are extracted individually, in FUT procedures a strip of skin is removed from the back of the scalp, it is then dissected into follicular units, and those follicular unit grafts are then implanted into recipient sites in the patient’s scalp.

About Dr. Bernstein

Robert M. Bernstein, M.D., F.A.A.D., A.B.H.R.S. is a Clinical Professor of Dermatology at Columbia University and a pioneer in the field of hair restoration. His landmark scientific papers are considered seminal works in the field of hair transplant surgery, and he is the most widely published author on the topic having published more than sixty articles, editorial reviews, books, and textbook chapters.

Dr. Bernstein has been selected as one of New York Magazine’s “Best Doctor’s” for thirteen consecutive years and he has appeared as a hair loss and hair transplantation expert on The Oprah Winfrey Show, The Dr. Oz Show, Good Morning America, The Today Show, The Discovery Channel, CBS News, Fox News, and National Public Radio. Dr. Bernstein has been interviewed or featured in articles in GQ Magazine, Men’s Health, Interview Magazine, Vogue, the New York Times, and others.

About Bernstein Medical – Center for Hair Restoration

Bernstein Medical – Center for Hair Restoration is a state-of-the-art hair restoration facility and international referral center, located in midtown Manhattan, New York City. The center is dedicated to the diagnosis and treatment of hair loss in men and women. Hair transplant surgery, hair repair surgery, and eyebrow restoration are performed using Dr. Bernstein’s pioneering techniques of Follicular Unit Transplantation (FUT) and robotic Follicular Unit Extraction (R-FUE).

Posted by

Robotic FUE has improved Follicular Unit Extraction by automating what has been a labor intensive and often inexact manual procedure. It is the latest in a long line of improvements made to hair restoration procedures that lead to better results for hair transplant patients. Dr. Bernstein’s recent publication in Hair Transplant Forum International improves the FUE procedure even further, whether performing follicular unit extraction with the FUE robot or by hand.

In his article, Dr. Bernstein suggests two techniques to enhance the FUE procedure. First, he recommends that surgeons create recipient sites prior to extraction, in order to decrease the time grafts are in their holding solution outside the body. Second, he suggests adding time between site creation and graft harvesting and placement, to allow recipient site healing to progress.

Pre-Making Recipient Sites

As is discussed in the full article (which is available for viewing and download in our Medical Publications section), by making recipient sites first, the time grafts are out of the body will be reduced.FUE procedures lend themselves to easily reversing the normal hair transplant sequence of graft (strip) harvesting followed by dissection and site creation.

These “pre-made” recipient sites will also exhibit less bleeding than newly created sites and will exhibit the stickiness that makes older sites easier to place grafts into with less popping (a common source of graft injury). Besides allowing the placing step to proceed more quickly, pre-making sites will reduce the risk of mechanical injury inherent in repositioning elevated grafts.

After Site Creation, Add Delay between Graft Harvesting and Placement

While Dr. Bernstein acknowledges the expediency for the hair restoration physician, as well as the comfort of the patient in a single-day session, he suggests that, to facilitate growth after a transplant, multiple-day procedures should be considered in large hair transplant sessions that involve the placement of thousands of grafts.

In conclusion, these two modifications -— pre-making recipient sites and adding a delay before graft placement -— to the FUE procedure can potentially contribute to better growth due to easier, less traumatic graft insertion, a shortened time “out of body,” and the creation of a more fertile bed for the implanted grafts.

View the full article to read details about these and other potential advantages of pre-making recipient sites

Posted by

Q: Some surgeons are doing hair transplants using 5,000 to 6,000 grafts in a single surgery. Looking at the cases in your photo gallery, it seems like your hair transplants involve many fewer grafts per surgery. Do you do such large graft numbers in a single hair restoration procedure? — H.P., Cranston, R.I.

A: The goal in surgical hair restoration should be to achieve the best results using the least amount of donor hair (the patient’s permanent reserves) and not simply to transplant the most grafts in one session. In my opinion, although large sessions are very desirable, the recent obsession with extremely large numbers of grafts in one session is misplaced. The focus should be on results.

For example, I would prefer to have full growth with a properly placed 2,500 – 3,000 graft hair transplant session than partial growth in a 5,000 graft session. Of course, the 5,000 graft session will look fuller than 2,500 grafts but, in my experience, never twice as full, and never as full as two 2,500 graft sessions.

The ability to perform large sessions is possible because of the very small recipient sites needed in Follicular Unit Transplantation (FUT). It is one of the main reasons that we developed this procedure in back in 1995. See the first paper on this subject: Follicular Transplantation.

However, like all good things, the technique loses some of its advantage when taken to extreme.

In “very” large sessions, the long duration of surgery, the increased time the grafts are outside the body, the increased amount of scalp wounding, risk of poor growth, wider donor scars, placing grafts where they are not needed, sub-dividing follicular units, and the decreased ability to plan for future hair loss, can all contribute to suboptimal results. These problems don’t always occur, but the larger the session, the greater the risk. Therefore, it is important to decide if one’s goal is simply to transplant the maximum amount of hair that is possible in one session, or to get the best long-term results from your hair restoration.

Follicular Unit Preservation

One of the most fundamental issues is that doctors using very large sessions are not always performing “Follicular Unit Transplantation” and, therefore, in these situations the patients will not achieve the full benefit of the FUT procedure. Although doctors who perform these very large sessions take the liberty of calling their surgery “Follicular Unit Transplantation,” in actuality it is not, since naturally occurring follicular units are not always kept whole. The procedure is defined as follows: “Follicular Unit Transplantation is a method of hair restoration surgery where hair is transplanted exclusively in its naturally occurring, individual follicular units.” (see Hair Transplant Classification)

By preserving follicular units, FUT maximizes the cosmetic impact of the surgery by using the full complement of 1 to 4-hairs contained in naturally occurring follicular units. A whole follicular unit will obviously contain more hair than a partial one and will give the most fullness. Keeping follicular units whole also insures maximal growth since a divided follicular unit loses its protective sheath and risks being damaged in the dissection.

It can sound impressive to claim that you performing very large hair transplants, but if the large numbers of grafts are a result dividing up follicular units, then the patient is being short-changed. The reason is that, although the number of grafts is increased, the total number of hairs transplanted is not. A 3-hair follicular unit that is split up into a 1-hair and 2-hair micro-graft will double the graft count, but not change the total number of hairs actually transplanted. In fact, due to the increased dissection, more fragile grafts, and all the other potential problems associated with very long hair transplant sessions, the total number of hairs that actually grow may be a lot less. Please look at the section “Limits to Large Hair Transplant Sessions” on the Graft Numbers page of the Bernstein Medical – Center for Hair Restoration website for a more detailed explanation of how breaking up follicular units can affect graft counts.

Donor Scarring

Since there are around 90 follicular units per cm2 in the donor scalp, one needs a 1cm wide by 28cm long (11inch) incision to harvest 2,500 follicular units. A 5,000 follicular unit procedure, using this width, would need to be 22 inches long, but the maximum length one can harvest a strip in the average individual is 13 inches (the distance around the entire scalp from one temple to the other).

In order to harvest 5,000 grafts, one would need 5,000 / 90 FU/cm2 = 55.6cm2 of donor tissue. If one takes the full 13 inch strip (33cm), then it would need to be 1.85 cm wide (55.6cm2 / (33cm long) = 1.85cm wide) or 1.85/2.54= ¾ of an inch wide along its entire length. However, one must taper the ends of a strip this wide (you can’t suture closed a rectangle) and, in addition, you can’t take such a wide strip over the ears. When you do the math again, it turns out that for most of the incision, the width must be almost an inch wide, an incredibly large amount of tissue to be removed in one procedure.

This large incision obviously increases the risk of having a wide donor scar – probably the most undesirable complication of a hair transplant. Needless to say, very large graft counts are achieved by sub-dividing follicular units rather than exposing the patient to the risk of an excessively large donor incision.

Popping

There are other issues as well. Large sessions go hand-in-hand with very high graft densities, since you often need these densities to fit the grafts in a finite area. The closer grafts are placed together, the greater the degree of popping. Popping occurs when a graft that is placed in the skin causes an adjacent one to lift-up. When a graft pops (elevates above the surface of the skin) it tends to dry out and die. Some degree of popping is a normal part of most hair transplant procedures and can be easily controlled by a skilled surgical team, but when it is excessive it can pose a significant risk to graft survival.

The best way to decrease the risk of popping being a significant problem is to not push large sessions (and the associated very dense packing) to the limit. In a patient’s first hair restoration procedure, it is literally impossible to predict the likelihood of excessive popping and once a very large strip is harvested, or the recipient sites are created in a very large session, it may be too late to correct for this. In addition, popping can vary at different times during the procedure and in different parts of the scalp adding to the problem of anticipating its occurrence.

Even if the distribution of grafts is well planned from the outset, a very large first session may force the surgeon to place hair in less-than-optimal regions of the scalp when popping occurs. This is because the surgeon must distribute the grafts further apart and thus over a larger area to prevent popping.

Blood Flow

Particularly where there is long-standing hair loss, the blood flow to the scalp has decreased making the scalp unable to support a very large number of grafts. This is not the cause of the hair loss, but the result of a decreased need for blood when the follicles have disappeared. In addition, persons that have been bald for a long time often have more sun damage on their scalp, a second factor that significantly compromises the scalp’s blood supply and may compromise the follicles survival when too many grafts are placed in one session. As with popping, the extent of photo-damage, as seen when the scalp gets a dusky-purple color during the creating of recipient sites, often only becomes evident once the procedure is well under way.

In the healing process following the first hair transplant, much of the original blood supply returns and this makes the scalp able to support additional grafts (this is particularly true if one waits a minimum of 8-10 months between procedures). This is another reason why it is better to not to be too aggressive in a first session when there is long-standing baldness or significant photo damage and where the blood supply may be compromised.

Limited Donor Supply

Another issue that is overlooked in performing a very large first session is that the average person only has about 6,000 movable follicular units in the donor area. When 5,000 grafts are used for the 1st procedure there will be little left for subsequent sessions and limit the ability of the surgeon to increase density in areas such as the frontal forelock or transplant into new areas when there is additional hair loss.

Conclusion

There are many advantages of performing large hair transplants, including having a natural look after one procedure, minimizing the number of times the donor area is accessed, and accomplishing the patient’s goals as quickly as possible. However, one should be cautious not to achieve this at the expense of a wider donor scar, poor graft growth, or a compromised ability to plan for future hair loss.

Achieving very high graft numbers should never be accomplished by dividing up the naturally occurring follicular units into smaller groups, as this increases the risk to the grafts, extends the duration of surgery, increases the cost of the procedure (when charging by the graft) and results in an overall thinner look.

For further discussion see:

Posted by

Q: I had hair transplant surgery 10 days ago and have since developed what looks like big, dry flakes in the transplant area. How long does it take for the grafts to root, and is it okay that some of the grafts fall out when brushing my hair back carefully at this point? Also, the area that was worked on has not fallen out yet, so should I shave this area before the new hair comes in or should this be a natural process? — N.N., Easton, C.T.

A: Grafts are generally permanent 9 days following a follicular unit hair transplant procedure, so you may shampoo the flakes off at this time. If larger grafts were placed (with correspondingly larger recipient sites), the grafts will be subject to being lost for a slightly longer period of time. After 9 days, you may shave or clip the hair in the transplanted area if you like, but this will not affect the success of the hair restoration one way or the other.

Visit: Graft anchoring following a hair transplant

Posted by

Q: What causes graft popping during a hair transplant? G.K. – Carle Place, N.Y.

A: Popping, or the tendency for grafts to elevate after they have been placed into the recipient area, is caused by a number of factors including:

  • Packing the grafts too closely, particularly when they are placed on a very acute (sharp) angle with the skin
  • Rough placing techniques
  • Bleeding
  • Poor fit between the graft and recipient site
  • Natural characteristics of the patient’s skin, including the elasticity and stickiness of wound edges

The problem with popping is that it exposes grafts to drying (while they are elevated on the skin surface) and trauma (when they have to be re-inserted).

The judgment and experience of the surgeon performing hair transplants is extremely important in minimizing popping. It is important that the surgeon customize the site size to the different size follicular unit grafts and to test the recipient sites as they are made, to make sure that the “fit” is perfect.

Although it is important to place grafts close together to get the best cosmetic result possible, over-packing of the grafts risks popping and other factors (such as overwhelming the blood supply) that may lead to poor growth.

In the end, maximum growth of the transplanted hair should be the primary goal.

Posted by

Q: Does dense packing hurt grafts? — P.L., Rye, NY

A: There is no absolute answer to this question. In a hair transplant, dense packing of grafts has a risk of decreasing yield if there is a significant amount of photo damage to the scalp (which alters the blood supply) and if there is a tendency for the grafts to pop (this is difficult to predict pre-operatively). Very closely spaced grafts exacerbate the popping and expose the grafts to desiccation (drying), hypoxia (lack of oxygen) and mechanical trauma from the necessary re-insertion.

That said, the skill of the hair transplant surgeon and placing team, the size of the recipient sites, and the way the grafts are dissected and trimmed all play important roles in determining graft survival in dense packing.

Read a thorough analysis of the “pros” and “cons” of large hair transplant sessions
Read answers to more questions on dense packing of grafts

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top

Learn more about hair restoration

Hair loss has a variety of causes. Diagnosis and treatment is best determined by a board-certified dermatologist. We offer both in-person and online photo consults.

Provide your email to learn more.