Bernstein Medical - Center for Hair Restoration - Hair Transplant By Robot

Hair Transplant By Robot

About Header Image

Q: What is the main difference between hair transplants using the robot versus other procedures? — M.P., Flatiron, NY

A: There are two basic types of hair transplant procedures, Follicular Unit Transplantation (FUT or strip surgery) and Follicular Unit Extraction (FUE).

In FUT, donor hair is harvested by removing a long thin strip from the back of the scalp. Individual follicular units are then obtained from this strip using stereo-microscopic dissection. In FUE, individual follicular units are harvested directly from the donor area using a sharp, round cutting instrument.

The ARTAS Robotic System performs the follicular unit isolation step of an FUE procedure and can also create recipient sites according to specifications determined by the hair restoration surgeon. In performing each of these steps, the robot uses its image-guided technology to locate the next target and position the cutting instrument, and it does so with precision and speed that cannot be accomplished using manual FUE techniques or instruments.

Posted by

Q: Does Follicular Unit Extraction performed by a robot hurt more than regular FUE? — R.T., Greenwich, CT

A: As with manual FUE, robotic FUE hair transplantation is an outpatient procedure performed under long-acting local anesthesia – a combination of lidocaine and bupivacaine. After the initial injections, the patient does not experience any pain or discomfort.

Before starting local anesthesia, we give most patients oral valium and intra-muscular midazolam (a very fast acting sedative that is very relaxing). While some patients doze off at the beginning of the procedure, others prefer to watch TV, a film, or just chat.

Local anesthesia generally wears off after 4-5 hours, so for transplant sessions lasting longer than this, we will give more anesthesia before the first wears off. With Robotic FUE, there is no discomfort once the procedure is completed and the anesthesia wears off. This is in stark contrast to an FUT strip procedure which can be uncomfortable in the donor area for days to weeks.

Posted by

In a study ((Shin JW, Kwon SH, Kim SA, Kim JY, Na JI, Chan Park K, Huh CH. Characteristics of robotically harvested hair follicles in Koreans. J Am Acad Dermatol, 2014 Sep 13. pii: S0190-9622(14)01789-7.)) published in the January 2014 issue of the journal ‘Dermatologic Surgery,’ researchers from the Republic of Korea collected and analyzed robotically harvested follicular units in a clinical setting using the ARTAS® Robotic System. This is the first time such data has been collected from Korean patients.

Specifically, they looked at the yield of follicular units, the ratio of successfully extracted follicular units to the total number of attempted extractions, and the rate at which hair follicles were transected, or damaged, during the procedure.

They found that the ARTAS system was able to harvest multiple hairs with high yields and low transection rates.

The Study: Characteristics of Robotically Harvested Hair Follicles in Koreans

The researchers collected data on robotically harvested follicular units from 22 Korean patients in a clinical setting using the ARTAS system. To reduce variation due to differences in patients, they collected follicular units from the same scalp location on each patient.

On average, the researchers found that 95% of extraction attempts were successful in producing a follicular unit, while the remaining 5% of attempts resulted in follicular units either being lost inside the robot’s suction system or becoming attached to the robot’s dissection instrument.

Of the successfully extracted follicular units, the average transection rate was 4.9%. This is 16% to 38% lower than has been reported elsewhere ((Wasserbauer S. Robotic assisted harvest of follicular units: Abstract book of 19th annual scientific meeting of International Society of Hair Restoration Surgery; September 14-18, 2011; Anchorage, AK. pp. 252-6.)), ((Kasai K, Haruyama I, Aikawa Y, Saito K. Advantages and disadvantages of FUE using ARTAS system form Japanese: Abstract book of 21st annual scientific meeting of International Society of Hair Restoration Surgery; October 23-26, 2013; San Francisco (CA). pp. 387-8.)). The researchers hypothesized that this lower transection rate could be due attribute these differences to the variability of a patient’s hair profile (e.g., waviness, thickness, color) and the surgeon’s minute control of the depth of punches.

Finally, they found that the robot was able to harvest follicular units that contained multiple hair follicles, anywhere from 2 to 5 follicles with the average being 2.4; However, they also found that as the number of hair follicles inside a follicular unit increased, the likelihood of transecting one or more follicles also increased.

The researchers concluded that the robot efficiently harvests not only follicular units with single hairs but also follicular units with multiple hairs. A limitation of the study was not comparing the characteristics of robotically harvested follicular units to manually harvested follicular units within the same group of patients.

Posted by

Dr. Robert M. Bernstein presented the ARTAS Hair Studio™ digital hair transplant design software and robotic recipient site creation using the ARTAS® Robotic Hair Transplant system, each advances in key aspects of hair transplantation, at the International Society of Hair Restoration Surgeons (ISHRS) annual meeting in Kuala Lumpur, Malaysia on Saturday, October 11th, 2014.

Kuala Lumpur, Malaysia (PRWEB) October 31, 2014 — Robert M. Bernstein, M.D., F.A.A.D., a world-renowned hair transplant pioneer, has presented two advances in robotic hair transplant surgery to the hair restoration industry’s largest conference; an interactive hair restoration design software suite called ARTAS Hair Studio™ and recipient site creation capability in the ground-breaking ARTAS® Robotic Hair Transplant system. Dr. Bernstein’s presentation highlights the fact that the ARTAS System is the first system to integrate the planning and performance of a hair transplant procedure. Dr. Bernstein presented these new technologies at the 22nd Annual Science Meeting of the International Society of Hair Restoration Surgeons (ISHRS) in Kuala Lumpur, Malaysia, on October 11th, 2014.

ISHRS 2014 - 22nd Annual Scientific Meeting - Kuala Lumpur, Malaysia
ISHRS 2014 – 22nd Annual Scientific Meeting in Kuala Lumpur, Malaysia

ARTAS Hair Studio is a planning tool that assists the physician in the design phase of the hair restoration procedure. Dr. Bernstein’s presentation described how this software enables the physician to generate a three-dimensional model of the patient’s head and then create a treatment plan based on parameters such as the number of recipient sites, the angle of elevation of the hairs, and the direction of the hairs. With small modifications of the software, the technology can add “virtual” hair to the 3-D model and allow patients to see how the results will actually look. This will create a more interactive, educational experience for the patient and one that helps align the patient’s expectations with what is possible given their specific hair loss characteristics.

Dr. Bernstein showed how, using the new software, the surgeon can divide the treatment area into two or more sections and then program different recipient site densities for the different areas to closely mimic how hair grows in nature. The treatment plan created using ARTAS Hair Studio can be saved and then imported into the ARTAS hair transplant robot.

Once the design specifications have been imported, the ARTAS Robot can then create the recipient sites, the tiny incisions made in a patient’s scalp, into which transplanted grafts of naturally-occurring groups of 1-4 hairs, called follicular units, are placed.

Recipient Site Creation at Bernstein Medical Using ARTAS Robotic System
Recipient Site Creation at Bernstein Medical Using ARTAS Robotic System

In his presentation to the ISHRS, Dr. Bernstein described several advantages of robotic site creation over manual site creation, including: the elimination of inconsistencies in creating large numbers of recipient sites by hand, precise distribution of follicular unit grafts, automatic adjustment to site densities, and automatic avoidance of existing hairs without sacrificing speed. The robot uses advanced sensory equipment and optical cues to locate potential recipient sites on the scalp and then quickly and accurately make the incisions based on the pre-programmed parameters. The robot can create up to 2,000 recipient sites in approximately one hour.

Dr. Bernstein noted that these advances represent an integration of the design and planning processes with the actual performance of the procedure. Whereas in the past, the doctor would describe the treatment plan to the patient and then manually implement the prescribed plan, today’s computerized robotic system allows the physician to digitally design the hair transplant treatment plan, and then that plan directs the robot in the operating room.

Restoration Robotics Inc., the company that developed the robot, collaborated with Dr. Bernstein, using the Bernstein Medical – Center for Hair Restoration facility as a beta-testing site, to upgrade the ARTAS robot and test these and other advances. The ultimate goal is to deliver a robot that will mechanize every surgical aspect of an FUE hair transplant procedure.

About Robert M. Bernstein, MD, MBA, FAAD

Dr. Bernstein’s published articles on follicular unit hair transplant procedures have been called “Bibles” for the industry. He has received the Platinum Follicle Award, the highest honor in the field. He is a fellow of the International Society of Hair Restoration Surgery (ISHRS). Dr. Bernstein has appeared as a hair restoration expert on many notable television programs and in many news and lifestyle publications over the years. Examples include: The Oprah Winfrey Show, The Dr. Oz Show, The Today Show, Good Morning America, ABC News, CBS News, New York Times, Wall Street Journal, Men’s Health Magazine, and more. He is co-author of Hair Loss & Replacement for Dummies. Dr. Bernstein graduated with honors from Tulane University, received the degree of Doctor of Medicine at the University of Medicine and Dentistry of NJ, and completed his training in Dermatology at the Albert Einstein College of Medicine. Dr. Bernstein is a Clinical Professor of Dermatology at Columbia University.

About Bernstein Medical – Center for Hair Restoration

Bernstein Medical – Center for Hair Restoration, the facility Dr. Bernstein founded in 2005, is dedicated to the diagnosis and treatment of hair loss in men and women using the most advanced technologies. The state-of-the-art facility is located in midtown Manhattan, New York City and treats patients from around the globe. In 2011, Bernstein Medical became one of the first practices in the world to offer Robotic FUE procedures using the image-guided, computer-driven technology of the ARTAS Robotic System. Bernstein Medical is a beta-testing site of the robot’s new capability including the creation of recipient sites and Dr. Bernstein is a medical advisor to the company that produces the robotic system, Restoration Robotics, Inc. The board-certified physicians and highly-trained clinical assistants at Bernstein Medical take pride in providing the highest level of treatment and care for all patients.

Posted by

Q: I am 26 years old and have been suffering from hair loss for 8 years. I have been on Propecia (finasteride) and Rogaine (minoxidil) during those years. Unfortunately my hair loss has continued to progress aggressively. I am of half African and Caucasian descent, and my hair is curly. I understand that there are certain limitations on having hair transplants before you are 35, however I do not mind having another transplant in a few years, if necessary. — A.L., Rye, N.Y.

A: Although it is possible to have a hair transplant to the crown using robotic FUE in African American patients, given your young age and that you state your hair loss is progressing aggressively while on Propecia and Minoxidil, it is likely not a good decision to have surgery at this time.

The reason is that as your hair loss surrounding the crown expands over time, it may look unnatural to have hair transplanted solely to the crown region.

At your age, it is best to take Propecia (finasteride) and Rogaine (minoxidil), and if a transplant is indicated, to start at your frontal hairline and top of your scalp, the areas that will be most important cosmetically long-term.

Posted by

Health News DigestDr. Bernstein discusses the breakthrough technology of the ARTAS® Robotic Hair Transplant system — and how the robot has improved since its initial version — in an article in Health News Digest.

Not only is the mainstreaming of the hair transplant robot changing perceptions of surgical hair restoration in the public eye, says author of the article Wendy Lewis, but the robot is increasingly in demand at the leading hair restoration facilities across the country.

In the article, Dr. Bernstein describes how the robot is the latest evolution of the popular Follicular Unit Extraction hair transplant procedure:

According to Robert M. Bernstein, MD, FAAD, founder of Bernstein Medical – Center for Hair Restoration in New York City, “Follicular unit extraction (FUE) procedures have progressed from using labor-intensive, hand-held instruments all the way to a computer-assisted, image-guided robot. It dissects follicular units accurately and consistently, thousands of times in a single session.”

ARTAS Robot In Use at Bernstein MedicalARTAS Robot In Use at Bernstein Medical

In a recent interview with Bald Truth’s Spencer Kobren, Dr. Bernstein noted that the impression many physicians have of the FUE robot is of the initial iteration that was launched more than three years ago. In the Health News Digest article, Dr. Bernstein again makes the point that the ARTAS robot of 2014 is better than version 1.0:

“Robotic extraction has been greatly improved since the first machines were introduced over three years ago and the ARTAS robot is now used by over 70 surgeons worldwide,” said Dr. Bernstein. “We are comfortable offering it to patients as the state of the art procedure for permanent hair restoration. […] According to Dr. Bernstein, “With the addition of recipient site creation to the ARTAS Robotic System, we are one step closer to fully-automated robotic hair transplantation.”

Another breakthrough advance of the ARTAS system is the interactive visualization software called ARTAS Hair Studio:

Using actual photos of the patients, the ARTAS Hair Studio software generates a three-dimensional model on a touchscreen tablet, which allows physicians to customize a recipient site pattern design – creating hairlines and specifying hair location, distribution densities and growth directions. It also permits patients to visualize how a simulated number of grafts will appear on the scalp, with the intention of increasing the predictability and confidence of the outcome.

Dr. Bernstein has used the robot for FUE procedures at the state-of-the-art Bernstein Medical – Center for Hair Restoration since the fall of 2011. All FUE procedures at Bernstein Medical are currently performed using the ARTAS system. Bernstein Medical is a beta-testing site for developments to the robot, including several improvements to the punch mechanism, as well as the development of robotic recipient site creation. Dr. Bernstein is an advisor to the company that developed the robot, Restoration Robotics, Inc., out of Mountain View, California.

HealthNewsDigest.com is an 11 year old online magazine that is considered the premier electronic health news network and #1 provider of health news content. It is syndicated to thousands of major health industry websites and journalists in 164 countries. The author of the article is President of Wendy Lewis & Co. Ltd. Global Aesthetics Consultancy, author of 11 books, and Founder/Editor-in-Chief of BeautyintheBag.com.

Posted by

Q: I have read a bit about the ARTAS robot and how it uses an “image-guided” system, but what does that mean? And how is the robot’s imaging system different than a human surgeon viewing the grafts with the naked eye? — S.V., Middle Village, N.Y.

A: That is a great question and it gets to one of the key benefits of the robotic hair transplant system: its accuracy. When a surgeon is performing FUE using manual techniques, they must wear a headset that magnifies the scalp so they can see the follicular units more clearly than with the naked eye. The surgeon must visually and mentally process subtle nuances of the skin and follicular units for every one of the hundreds or thousands of units that are extracted. The ARTAS robot magnifies the surface of the skin in much the same way, but to a much greater extent. In addition, it is not subject to the limitations of the human eye, or human hand, and it is not subject to human error. The surgeon may not have exact hand-eye coordination. The surgeon may be concentrating on one aspect of the extraction, say following the angle of the hair, but might ignore another important aspect of the follicle, say its depth in the skin or its orientation. And, of course, the surgeon tires, both physically and mentally, from performing the hundreds or thousands of repetitive motions.

The robot’s image-guided system, on the other hand, does not experience these limitations. The robot magnifies the skin, detects each follicular unit and the nuances of the skin/hair characteristics, and then extracts that follicular unit with precision. When the imaging system detects changes to the skin, this new information is fed into the computer in real-time and the system adjusts automatically based on this feedback as it continues to harvest grafts. There is no distracting the robot, and the robot will not forget, or ignore, key variables in the extraction. The robot can extract thousands of follicular units without tiring from repetition or slowing down the extraction.

Based on my own practical experience using the robot, it is clear that the robot’s ability to estimate the position of the follicles under the skin and to extract it with precision is superior to manual techniques. Having used the ARTAS system for over three years, and having helped make improvements to the device since the first iteration, I have seen robotic technology substantially improve the outcome for my patients.

Video Display of the ARTAS Robot Image-Guided System




Display: ARTAS Robot Image-Guided System

Posted by
The Aesthetic Guide - ARTAS® Improves Hair Graft Accuracy and Consistency

Dr. Robert Bernstein discusses the benefits of the ARTAS® Robotic Hair Transplant system in The Aesthetic Guide, a leading periodical in the field of aesthetic surgery. The article examines how robotic Follicular Unit Extraction (FUE) procedures are an improvement over FUE using handheld devices.

In the article, Dr. Bernstein explains how surgeons performing manual FUE need to calculate the angle, spacing, direction, depth, and orientation for each follicular unit harvested. The fact that this process must be repeated up to thousands of times per patient gives the manual FUE procedure significant variability.

Dr. Bernstein touches on a key reason why the image-guided robot is an improvement over manual techniques:

“The ARTAS robot is one of the first technologies used in practice where the computer of the robot is actually obtaining feedback from the anatomy of the patient. In this case, the robot is getting feedback regarding the distribution and direction of hair follicles. That information is communicated to the computer in real time and the computer makes adjustments as it continues to harvest the grafts, which is why the system is so accurate.”

The robot’s capability of making microscopic adjustments in real time, based on the characteristics of the patient’s skin, is a technological breakthrough in the field of hair restoration. Not only does the robot not tire when performing thousands of graft dissections, it estimates the position of the follicle under the skin more reliably than a human. According to Dr. Bernstein; “the accuracy of the robot remains consistent,” throughout the entire procedure, graft by graft.

The Aesthetic Guide - ARTAS Improves Hair Graft Accuracy and Consistency

This accuracy and consistency is critical in a hair transplant because the yield of healthy, viable grafts is one of the key factors in a successful procedure. If a surgeon, using manual techniques, transects (or cuts) a graft or doesn’t cut deeply enough into the skin tissue, then that graft might not survive the transplant. If a number of transected or damaged grafts don’t survive the transplant, then the result of the procedure will be limited in the aesthetic benefit that the surgery was designed to provide.

The article, which is titled “ARTAS Improves Hair Graft Accuracy and Consistency,” notes that Dr. Bernstein was one of the first physicians in the United States to use FUE robot in his practice, “one of the leading hair restoration centers in the country.”

Posted by

Q: Why does the ARTAS® Robotic System only do FUE, not FUT? — V.Z., Chicago, Illinois

A: Currently the robot is only used for harvesting grafts from the donor area. In FUE, the doctor punches out hundreds to thousands of individual follicular units from the back and sides of the scalp by hand using a small round instrument called a punch. The punch has to be held at exactly the right angle, with just the right pressure applied, stopped at a precise depth and, during this time, rotated (or spun mechanically) without changing the alignment.

As one can imagine, this exhaustingly tedious process can best be done using the precision of a robotic device.

In FUT, the harvesting is done by a surgeon using a scalpel to make a long incision in the back of the scalp. It only takes a few minutes. The harvested strip is removed and then placed under dissecting microscopes where the individual follicular units are isolated. This dissection, thus far, can only be done by hand. There is no robotic technology available to do this.

Harvesting the donor hair, of course, is only one part of a hair transplant. The other steps, recipient site creation (making the holes that the grafts are placed into) and actually placing the grafts into those sites are similar in both FUE and FUT.

It is anticipated that robotic site creation will be available in the fall of 2014 and robotic graft placement, the third and final step, about two years after that. At that time, the robot will be able to perform the entire FUE procedure and the last two parts of the FUT procedure.

Of course, the robot doesn’t do the surgery alone. The physician must input all the information regarding the design and planning of the procedure and closely monitor each step of the robotic process. Unlike automating industrial production, the human scalp has great variability, so there is no one formula that will be appropriate for every patient. Physician skill and involvement is just as important in robotic hair transplantation as it is with every other type of surgical hair restoration procedure.

Posted by

Q:  Is it true that hair transplants can now be done totally by a robot? — M.S., Los Angeles, California

A: The ARTAS Robotic System, developed by Restoration Robotics, is the most advanced technology for extracting grafts (the first and most difficult step in a Follicular Unit Extraction procedure), but it cannot yet do the entire hair transplant procedure, nor can it work without the supervision of the hair restoration surgeon.

Currently, the  ARTAS System assists the surgeon in performing the first part of an FUE hair transplant (i.e., the extraction phase) with greater precision and consistency than can be done by hand. Engineers and researchers are currently developing the ARTAS to do the remainder of the procedure as well, i.e., making recipient sites in parts of the scalp that have lost hair and then implanting the harvested grafts into these sites.

The next step, recipient site creation, will be available in the latter half of 2014. Dr. Bernstein is already testing a beta version of this new technology. We anticipate that within two years, under the supervision of the surgeon, the ARTAS robot will be performing most of the FUE hair transplant procedure.

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top