Bernstein Medical - Center for Hair Restoration - Recipient Site Creation
About Header Image
Recipient Site Creation at Bernstein MedicalDr. Bernstein creating recipient sites using the ARTAS robot

Hair transplant pioneer Dr. Robert M. Bernstein and his colleague Dr. William R. Rassman have received a patent on a new method that improves the outcome of Follicular Unit Extraction (FUE) — the type of procedure used in half of all hair transplants performed world-wide. The key invention is the addition of a delay between the creation of recipient sites and the insertion of follicular units into those sites. The delay allows the healing process to commence before grafts are inserted, resulting in increased success of the transplant and an improved outcome.

Dr. Bernstein introduced the concept of “pre-making recipient sites” into medical literature in a 2012 publication in Hair Transplant Forum International, has discussed the idea extensively, and presented findings at the 2015 ISHRS Annual Scientific Meeting. However, this is the first time he has patented a hair restoration technique.

The first 24 hours after any wound to the skin is a critical period of time in the healing process. Dr. Bernstein describes this initial period in his 2012 publication:

During the first 24 hours following recipient wound creation, a flurry of biologic activities take place that facilitate healing. These include: the migration of platelets with subsequent release of cytokines, growth factors and pro-inflammatory proteins (histamine, serotonin, kinins, prostaglandins, etc.) that increase blood vessel permeability and stimulate cell migration. Allowing these processes to begin before implantation of the grafts should be beneficial to their healing and subsequent growth. ((Bernstein RM, Rassman WR. Pre-making recipient sites to increase graft survival in manual and robotic FUE procedures. Hair Transplant Forum Intl. 2012; 22(4): 128-130.))

By making recipient sites in advance of harvesting the grafts, three important things are achieved by the surgeon:

  1. The time in which follicular unit grafts are outside the body is decreased
  2. The placement of grafts is facilitated, making it less likely that they are injured in the insertion process
  3. The early phases of the healing process (e.g., blood clot formation, creation of new blood vessels) naturally complete, resulting in a more stable, “fertile” site supplied with oxygen and nutrients essential for graft survival.

Dr. Bernstein proposed “pre-making” recipient sites in 2012 as a way to improve the Follicular Unit Extraction (FUE) procedure, and robotic-assisted FUE (Robotic FUE) in particular. This is due to the fact that the positioning of the patient makes it problematic to create recipient sites and place grafts while follicular units are being extracted from the donor area. This is not the case in Follicular Unit Transplant (FUT) procedures, in which a donor strip is removed from the patient then dissected on a dissecting table. In FUT, recipient sites can be created and grafts can be placed concurrently with the dissection process.

“Pre-making” recipient sites is a protocol that should be followed during all FUE hair transplant procedures. It is also applicable in hair multiplication and hair regeneration techniques that are being studied as a way to provide an unlimited amount of donor hair for hair restoration purposes.

Posted by

Q: How are specifications for making recipient sites inputted into the ARTAS® robot? — A.F., Queens, NY

A: At the outset of the procedure, the physician sits at a computer terminal that is connected to the ARTAS Robot and enters the specifications directly into the robot’s software. Variables programmed in this manner include the number of recipient sites, density of sites, angle that the hair will extrude from the skin, depth of recipient sites, and the minimum distance away from existing hair follicles that a site can be created.

Posted by
Dr. Bernstein at ISHRS 2015 Annual Scientific MeetingDr. Bernstein at the 2015 ISHRS Annual Scientific Meeting

Small, simple modifications in the sequence of the major steps in a Follicular Unit Extraction (FUE) hair transplant procedure will be beneficial to healing and growth following the procedure, says renowned hair restoration surgeon Dr. Robert M. Bernstein. Presenting at the 23rd Annual Scientific Meeting of the International Society of Hair Restoration Surgery (ISHRS) in Chicago, Illinois, Dr. Bernstein detailed how making recipient site incisions before harvesting follicular unit grafts can improve the outcome of an FUE procedure.

For years, it was standard operating procedure in an FUE hair transplant to first harvest follicular units, then create recipient sites in the balding areas and place the extracted units into these sites. This practice persisted despite the fact that hair restoration physicians had known for years that prolonged periods of time outside the body decreased survival of follicular unit grafts. With the widespread adoption of FUE, and the long time needed for the extraction phase of the procedure, Dr. Bernstein looked for ways to streamline the process.

Dr. Bernstein Presenting at ISHRS 2015Dr. Bernstein Presenting at ISHRS 2015

By making the requisite number of recipient sites before harvesting, the grafts can be placed as soon as they are extracted. This reduces the critical period of time that grafts are out of the body. Sites created before harvesting have more time to begin healing, and so they exhibit less bleeding. This results in fewer grafts that “pop” out of the recipient site during placement. Mechanical trauma to grafts that need re-positioning after popping is also reduced. Allowing time for recipient sites to begin healing might also provide a more fertile bed for newly implanted grafts to take root. Additionally, pre-making sites provides time for crusts to form on the surface of the wound. Removing these crusts before placement decreases post-operative inflammation and promotes wound healing.

Dr. Bernstein proposed that in some large FUE sessions, in which large numbers of follicular units are transplanted, the surgeon might deliberately delay extraction to allow pre-made recipient sites additional time to heal by creating recipient sites the day before harvesting.

In sum, Dr. Bernstein provided the audience of hair restoration surgeons with a practical modification of the traditional FUE procedure that could impact the outcome of every hair transplant. Given the growth in the number of FUE hair transplants being performed (now about 50% of all hair transplant procedures) and the international platform provided by the ISHRS Annual Scientific Meeting, this small procedural adjustment could have a significant benefit for thousands of hair restoration patients around the world.

Read these publications by Dr. Bernstein on recipient site creation:

Pre-Making Recipient Sites to Increase Graft Survival in Manual and Robotic FUE Procedures (2012)
Robotic Recipient Site Creation in Hair Transplantation (2014)

Posted by

Q: Why is using the robot to create recipient sites useful in a hair transplant? — S.K., Jersey City, NJ

A: The ARTAS® Robotic Hair Transplant system eliminates the inconsistencies inherent in creating large numbers of recipient sites by hand. The robot can create sites at a rate of up to 2,000 per hour. Although there is more set-up time compared to sites made manually, once the physician specifies the parameters such as punch depth, punch angle, and site direction, recipient site creation is precise and rapid.

One of the benefits of robotic site creation is that the distribution of grafts over a fixed area of the scalp can be exact. For example, if one wants to transplant 1,000 grafts evenly over 50cm2 of area, this can be done with great precision and with uniform site spacing. In addition, the physician can vary the densities in select regions of the scalp and the robot will adjust the densities in other areas so that the total number of sites remains the same.

Another benefit of the new technology is that the robot can be programmed to avoid existing hair and select which specific hair diameters to avoid. The robot is programmed to keep a specified distance from the existing hair to ensure that the resident follicles will not be damaged and that the distribution of new hair is even and natural. This computerized mechanism appears to be more accurate than what can be done by hand and, importantly, does not sacrifice speed in the process.

Posted by

Q: How do recipient sites get made in Robotic FUE? And how does the robot know where to create the sites? — K.K., Bergen County, NJ

A: In performing recipient site creation, the ARTAS Robotic Hair Transplant system automates another part of the hair transplant process that is repetitive and prone to human error. In robotic site creation, the physician first designs the hair restoration and then specifies the angle of hair elevation, hair direction, site depth, average density, and total number of the recipient site incisions. The robot then creates the sites according to these specifications.

During site creation, the robot automatically uses its image-guided technology to avoid hairs of a certain diameter (specified by the doctor). The robot creates sites at a minimum distance from hairs of the specified diameter (the distance is also specified by the physician) and will do so randomly throughout the areas where the hair is finer or the scalp is bald. With this important feature, the new distribution of sites can be made to complement the distribution of existing hair. Observation of the ARTAS System suggests that it performs recipient site creation with greater precision and consistency than can be accomplished manually.

Posted by

Q: I’ve heard it takes the artistry of the surgeon to create a natural looking hair transplant. How do you do this with a robot? — S.S., Shanghai, China

A: I currently create the recipient sites by hand using different size needles. They determine the angle, direction and distribution of the grafts, and these three variables determine the aesthetic aspects of the hair transplant.

However, I am working with Restoration Robotics to have the ARTAS System create recipient sites and we are currently beta-testing this technology. The robot can now make very precise recipient sites. The ability of the robot to mimic the art of the surgeon is in the works, and we expect it to be ready in the fall of 2014.

In this new robotic-assisted process, the surgeon designs the hairline and delineates the area to be transplanted directly on the patient’s scalp. The surgeon then photographs the patient’s scalp and feeds the photograph into the robot’s computer to create a digital 3-D image. The doctor, in order to have the robot mimic what he would do by hand, can then manipulate various parameters, such as hair angle, direction and density.

Read more about Recipient Site Creation in a Robotic Hair Transplant

Posted by
ARTAS Robotic System display monitor showing parameters for the creation of recipient sitesARTAS Robotic System display monitor showing parameters for the creation of recipient sites

New York, NY (PRWEB) — Robert M. Bernstein, M.D., F.A.A.D., A.B.H.R.S., founder of Bernstein Medical – Center for Hair Restoration, introduced new technology that allows the ARTAS Robotic System to accomplish a critical step in hair transplant surgery, the creation of recipient sites. Presenting at the 2nd ARTAS User Group Meeting, Dr. Bernstein previewed the recipient site creation technology that brings the robotic system one step closer to performing critical aspects of the labor-intensive, hair transplant procedure.

The ARTAS System is currently able to harvest intact follicular unit grafts from the permanent area in back of one’s scalp using precise robotic technology. This is the most difficult aspect of a follicular unit extraction hair transplant – the newer type of hair restoration procedure that avoids a linear scar in the back of the scalp. Now that site creation can also be done robotically, only one step remains – graft placement.

The ARTAS Robotic System maps the surgeon's hairline design onto a 3-D model of the patient's headThe ARTAS Robotic System maps the surgeon’s hairline design onto a 3-D model of the patient’s head

For the recipient site creation, the doctor first draws a hairline and other markings directly onto the patient’s scalp to delineate the surgical plan. Next, multiple photographs are taken and fed into software, called the ARTAS™ Hair Studio, which converts the images into a 3-D model of the actual patient. This computer model can be manipulated and saved for the patient’s procedure. Using the ARTAS™ Hair Studio software, the physician then specifies the angle, direction, density, and randomness of the recipient site incisions to create the most natural look. During the procedure, the robot uses image-guided technology to avoid existing hairs while it creates up to 1,500 recipient sites per hour. In performing recipient site creation, the robot automates a process that can be physically demanding and prone to human error.

On the advancement, Dr. Bernstein said:

“This development is a crucial step towards a robotic system that can perform every aspect of a hair transplant. A great deal of credit goes to the engineers of Restoration Robotics who have worked to make automated recipient site creation a reality. I am proud that this work not only improves hair transplants for patients, but adds to the increasingly important trend of using robotic technology in medicine.”

The site creation technology that Dr. Bernstein debuted at the ARTAS User Group Meeting; which was held in California (Laguna Niguel, CA) on February 7th and 8th, 2014; will be available to hair restoration physicians in the fall of 2014. Gabe Zingeratti Ph.D, head of R&D at Restoration Robotics, Inc., presented details of the technology, which was beta-tested at Bernstein Medical – Center for Hair Restoration. With the next generation ARTAS® Robotic System rolling out in the coming months, the focus of research will then be on the final phase of robotic hair transplantation, the robotic insertion of follicular unit grafts into recipient sites. This last step will take several more years to develop.

The ARTAS Robotic System, developed by Restoration Robotics, is currently in use by hair restoration physicians around the world to automate the extraction of grafts of skin and hair called follicular units.. Follicular units, which are natural groupings of one to four hair follicles, form the biological basis of the modern hair transplant procedure. Once extracted from the back of the patient’s scalp, the follicular unit grafts are then inserted into recipient sites in the balding area of the scalp where they grow hairs that are immune to the effects of common hair loss.

No stranger to innovative advances in hair transplant surgery, Dr. Bernstein introduced Follicular Unit Transplantation (FUT) to medical literature in a 1995 publication. FUT transformed hair transplants from the use of large grafts of skin and hair, known colloquially as “hair plugs,” to a more medically-oriented procedure that produces completely natural-appearing results. Dr. Bernstein with his colleague Dr. Bill Rassman again broke new ground with his 2002 publication that introduced the concept of Follicular Unit Extraction (FUE) to scientific literature. Dr. Bernstein was the first physician on the East Coast of the United Sates, and one of the first in the world, to use the ARTAS System to perform FUE using the new robotic technology.

About Robert M. Bernstein, M.D., F.A.A.D.

Dr. Robert M. Bernstein is a Clinical Professor of Dermatology at Columbia University and founder of Bernstein Medical – Center for Hair Restoration. His landmark scientific papers are considered seminal works in the field of hair transplant surgery. Other publications include textbook chapters on dermatologic surgery and books, like Hair Loss and Replacement for Dummies, aimed at the consumer audience. He has been selected as one of New York Magazine’s “Best Doctors” for fourteen consecutive years and has appeared as a hair loss and hair transplantation expert on The Oprah Winfrey Show, The Dr. Oz Show, Good Morning America, The Today Show, CBS News, Fox News, and The Discovery Channel. Dr. Bernstein has been interviewed or featured in articles in the New York Times, GQ Magazine, Men’s Health, Interview Magazine, Vogue, and others.

About Bernstein Medical – Center for Hair Restoration

Bernstein Medical – Center for Hair Restoration, founded in 2005, is a state-of-the-art facility and international referral center for the treatment of hair loss that is located in midtown Manhattan, New York City. Hair transplant surgery, hair repair surgery, and eyebrow restoration are performed using Dr. Bernstein’s pioneering techniques of Follicular Unit Transplantation (FUT) and Follicular Unit Extraction (FUE).

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top