New research has found that embryonic stem cells can be used to form a type of cell that induces new hair follicle growth, and that these cells promote robust hair growth when implanted into mice.
Dr. Claire Higgins and her colleague Dr. Colin Jahoda have published an overview of hair cloning and the challenges scientists face in attempting to develop hair regeneration therapies for androgenetic alopecia, or common balding. The article, published in Hair Transplant Forum International, points to two central problems in developing a hair loss therapy. The first is the difficulty in getting dermal papilla cells in humans to self-aggregate and form hair follicles and the second is the inability, thus far, of scientists to generate normal hairs and follicles.
For four decades, scientists have known about the possibility of using cells derived from the base of hair follicles (dermal papilla cells) to stimulate the growth of new hair. More recently, researchers have been able to harvest dermal papillae, multiply them, and induce the creation of new hair follicles – but only in rats. Now, for the first time, scientists at Columbia University have shown that they can induce new human hair growth from cloned human papillae. This procedure, called “hair follicle neogenesis,” has the potential to solve one of the primary limitations in today’s surgical hair restoration techniques; namely, the patient’s finite donor hair supply that is available for transplantation.
A significant number of hair loss patients do not have enough donor hair to be candidates for a hair transplant procedure with the percentage of women lacking stable donor hair greater than in men. This technique would enable both men and women with limited donor reserves to benefit from hair transplant procedures and enable current candidates to achieve even better results.
According to co-study leader Angela M. Christiano, Ph.D., of Columbia University in New York, the ground-breaking publication is a “substantial step forward” in hair follicle neogenesis. While the technology still needs further development to be clinically useful, the implications of successfully inducing new hair follicles to grow from cloned hair cells could be a game-changer in the arena of hair restoration. Instead of moving hair follicles from the donor area to the recipient area, as in a hair transplant, follicular neogenesis involves the creation of new follicles, literally adding more follicles to the scalp rather than merely transplanting them from one part of the scalp to another.
We have previously discussed Dr. Angela Christiano’s work on hair loss genetics with her team at Columbia University in New York. A review of the 16th annual meeting of the European Hair Research Society brings to our attention new research being conducted by a scientist who works at Dr. Christiano’s laboratory, Dr. Claire Higgins.
Dr. Higgins is studying the inductive properties of the dermal papilla (DP), which is a group of cells that form the structure directly below each hair follicle.
Japanese researchers have demonstrated that scientists can bioengineer viable, hair-producing follicles from epithelial stem cells and dermal papilla cells. Using these components, the team produced follicles that exhibit both the normal hair cycle and piloerection (the reflex contraction of a tiny muscle in the hair follicles which creates what is commonly referred to as “goose bumps”). The bioengineered follicles also developed the normal structures found within follicles and formed natural connections with skin tissues, muscle cells, and nerve cells.
Could it be that Vitamin D is the cure for baldness that scientists have been looking for all these years? New research on Vitamin D, and its receptors in hair follicles, has taken us down a previously untrodden path that could, potentially, lead to new medical treatments for hair loss.
The Vitamin D receptor was previously known to stimulate hair follicles, which were in the dormant phase of hair growth, to grow hair when activated. The research into Vitamin D and its effect on hair and skin, centers around this receptor.
RepliCel Life Sciences; a company out of Vancouver, Canada; is studying the use of hair cloning techniques to treat male pattern baldness and hair loss in women.
The study is in progress, but analysis of the 6-month interim results of the first phases have been published. As indicated in the graphic above, the preliminary results at 6 months show that vellus hair density has increased 24.9%, terminal hair density has increased 14.5%, overall hair density increased by 19.2%, and cumulative thickness per area increased by 15.4%.
Also, almost two-thirds of subjects (10 subjects out of 16, or 63%) received a greater than 5% increase in hair density at the injection site. Of that group of 10 subjects, 7 of them saw hair density improve by more than 10%, with the biggest improvement in hair density being an increase of 19.6% in one subject.
RepliCel Life Sciences; a company based in Vancouver, Canada; is investigating hair cloning techniques in order to develop a treatment for androgenetic alopecia, or common genetic hair loss.
Research conducted by the company’s scientific founders and lead scientists, Drs. Kevin McElwee and Rolf Hoffmann, has shown that a certain type of cell, called a dermal sheath cup cell, is integral in initiating the growth of mature hair follicles. This mechanism of follicle growth, when coupled with previous research on dermal papillae cells, is key to our understanding of hair loss and is a potential avenue for developing a treatment that could reverse hair loss.
Q: I haven’t seen much new with ACell. Have you been making progress with your research?
A: Thus far, we have not been able to multiply transplanted hairs with ACell, nor have been able minimize the width of the donor scars following FUT. At present, we are not recommending ACell to our patients, but are continuing to explore different ways of using it.
Robert M. Bernstein, M.D., F.A.A.D., the renowned hair transplant surgeon and founder of Bernstein Medical – Center for Hair Restoration in New York, is studying four different applications of ACell MatriStem™ extracellular matrix in a type of hair cloning, called hair multiplication, as well as current hair restoration procedures. Click the link to read the whole press release.
Scientists from Durham University in the UK have shown for the first time that a lab technique, called a three-dimensional cell culture, can produce spherical structures that are similar to naturally occurring structures in hair follicle formation (called dermal papilla or DP). This breakthrough study by Claire Higgins and Colin Jahoda, published in the June 2010 issue of the journal Experimental Dermatology, has the potential to unlock the ability of researchers to develop functional DP cells which can be used in hair restoration techniques such as hair cloning or hair multiplication.
Q: What are the possible obstacles that you see with hair cloning using the plucking technique? — D.E., Boston, MA
A: Plucked hair does not contain that much epithelial tissue, so we do not yet know what the success of the procedure will be. Plucked hairs will most likely grow into individual hair follicles that are not follicular units and therefore, will not have completely the natural (full) look of two and three hair grafts. This limitation may be circumvented, however, by placing several hairs in one recipient site. It is possible that the sebaceous gland may not fully develop, so the cloned hair may not have the full luster of a transplanted hair.
The most important concern is that, since the follicle is made, in part, by recipient cells that may be androgen sensitive, the plucked hair derived follicles may not be permanent. It is possible, that since all the components of a normal hair may not be present, the cloned hair may only survive for one hair cycle.
Since the ACell extracellular matrix is derived from porcine (pig) tissue, the procedure may not be appropriate if you are Kosher or allergic to pork. Of course, we do not know what other obstacles may arise since this technique is so new –- or even if the ones mentioned above will really be obstacles at all -– only time will tell.
Hair cloning is one of the most hotly discussed topics in the field of hair transplantation today. “When will hair cloning become available?” and “How will it work?” are among the most frequently asked questions about treating hair loss that we receive at Bernstein Medical – Center for Hair Restoration.
New developments in regenerative medicine technology, presented at the 18th Annual Scientific Meeting of the International Society for Hair Restoration (ISHRS), may have opened the door to commercialization and medical use of new techniques which could provide an answer to both questions.
ACell, Inc., a company based in Columbia, Maryland, has developed and refined what they consider, “the next generation of regenerative medicine.”
Two new avenues of scientific research, discussed in an article in the New York Times, might just help enable human beings to regenerate tissue. If we could tap into this capability, the possibilities for medical treatment are limitless. We could regrow an arm, a leg, a hand, repair a heart after a heart attack, or even regrow hair.
It is not a stretch to assume that if scientists can undo the inability of animals to grow heart muscle or limbs, we might someday be able to genetically reverse the inability of a bald person to grow hair.
Q: I just read a press release saying that researchers have developed a successful technique to clone hair by using a wound healing powder called MatriStem MicroMatrix. Is this new technique really a breakthrough in hair cloning? And if so, when can we start cloning hair?
A: It appears from preliminary studies that plucked hairs stimulated by ACell are in some cases able to regenerate new hair. Because the hair is placed into the recipient area and is partially derived from cells in the dermis, it is not yet clear whether the hair will be effected by androgens over time or if it will continue to bald.
The research so far is promising and a number of doctors are doing research in this area, including Dr. Schweiger and myself at Bernstein Medical – Center for Hair Restoration.
A new study, using hair cloning therapy to regrow hair, shows promise for all individuals suffering from alopecia areata. The study — conducted by Marwa Fawzi, a dermatologist at the University of Cairo Faculty of Medicine, and reported on Bloomberg.com — used stem cells from the scalps of eight children with alopecia areata to regenerate their own hair.