Hair Transplant Blog | Bernstein Medical - Page 17

Bernstein Medical Blog

About Header Image
This page contains all posts in our News, Answers, Video, and Research sections.
March 16th, 2015

New research published in the journal Developmental Cell has confirmed the importance of dermal sheath stem cells in maintaining the hair growth cycle. These cells, located around the lower portion of growing follicles, form the basis of an experimental treatment, being developed by Replicel Life Sciences, Inc., to regenerate hair-producing follicles. If successful, the treatment will be a game-changer for the hair restoration industry.

Rahmani W, et al. 2014

March 11th, 2015

Q: I have been reading about Robotic FUE and have seen some photos on your website of you operating the ARTAS robot using what looks like a remote control. What is that thing and how does it control the robot? — C.B., Greenwich, CT

A: The ARTAS robot uses a dual operating system when performing follicular unit extraction. One station consists of a desktop computer adjacent to the robot. This station is used to establish the basic parameters of the transplant such as the spacing of grafts, the angle and depth of the harvest, which size follicular units will be targeted, and a host of other important variables.

The hand-held pendant is used by the operator situated next to the patient. The remote has more limited options – the main ones being depth adjustment and to immediately suspend the action of the robot. Many of the parameters are determined automatically by the robot’s computer to maximize the accuracy of the harvesting. The robot also makes real-time adjustments to these variables during the hair restoration procedure.

The physician sets the parameters at the computer monitor and, once the settings are determined, he/she sets the tensioner grid on the patient’s scalp. The tensioner determines where the grafts will be harvested. The grid is moved approximately every 130 harvests. The robot can be operated at the computer terminal and through a mobile pendant. The physician often alternates with a trained assistant between that station and using the pendant.

Besides the involvement in the operation of the robot, there are many other important physician-dependent steps to the hair transplant including the planning and design of the procedure, and recipient site creation. Other steps, such as the microscopic sorting and trimming of harvested follicular unit grafts and graft placement, are often performed by trained staff, but require the physician’s close supervision.

March 10th, 2015

Synopsis: In their excellent article, “Robotic Follicular Unit Extraction in Hair Transplantation,” Avram and Watkin give a review of the salient aspects of the newly evolving field of robotic hair transplantation. As the authors state, the appeal of robotic FUE is part of the “inexorable trend” toward minimally invasive surgical procedures. As with any new technology, it is up to the practicing physician to make sure that it is used appropriately and to the maximum benefit of our patients.

March 8th, 2015

Synopsis: The ARTAS® Robotic System provides a unique, comprehensive suite of tools that physicians can use to minimize donor area scarring and offer the patient greater styling options post-surgery. Factors that influence scarring in the donor area include: dissection punch size, density of harvest sites, distribution of the harvest sites, total number of sites, and the ‘blending in’ of harvest zones with un-harvested areas.

February 17th, 2015
Dr. Bernstein Presenting at ARTAS User Group Meeting 2015

Dr. Robert M. Bernstein introduced a new capability of the ARTAS® robotic system, “Follicular Unit Graft Selection,” at the ARTAS User Group Meeting on February 6-7, 2015 in Newport Coast, CA. He presented the new technology and the preliminary results of a bilateral pilot study of the technique conducted at Bernstein Medical.

February 13th, 2015

Q: How does the ARTAS robot control the depth of the incision in Robotic FUE? — B.V., Old Greenwich, CT

A: The ARTAS robotic system is equipped with advanced sensors that determine the precise depth of the sharp and blunt needles used both in the graft harvesting step and for recipient site creation. The robot automatically adjusts to the precise depth needed for the non-traumatic extraction of the grafts. The tip of the punching mechanism contains depth markings so that the physician can visually override the punch when he wants to fine-tune its action. While monitoring the procedure in real time, if it is observed that the punches are too superficial or too deep, punch depth can be modified using the robot’s computer system.

The physician can also use the ARTAS system to precisely control the depth of recipient sites. As with harvesting, the robot automatically adjusts the depth based on parameters set by the physician and the doctor can then make further adjustments, in real-time, during the procedure.

Click here to read more about Robotic Hair Transplantation

January 13th, 2015

Q: I’m a 42 year old African-American woman and I’m losing hair on the crown of my head. Would I be a good candidate for a hair transplant? — E.E., Philadelphia, P.A.

A: Hair loss in the crown of an African American female can have several different etiologies, so the first thing to do is to make the right diagnosis. The most common causes of hair loss are androgenic alopecia (AGA) and scarring alopecia, also called ‘Central Centrifugal Cicatricial Alopecia,’ or CCCA. A biopsy is often useful to differentiate these two causes of hair loss when the diagnosis is unclear. A biopsy can also identify other, but less common, causes of crown hair loss.

Patients with central centrifugal cicatricial (scarring) alopecia are generally not candidates for a hair transplant procedure since the body may reject the transplanted hair. This condition is better treated with oral and injectable anti-inflammatory medications.

January 9th, 2015

Q: Does Follicular Unit Extraction performed by a robot hurt more than regular FUE? — R.T., Greenwich, CT

A: As with manual FUE, robotic FUE hair transplantation is an outpatient procedure performed under long-acting local anesthesia – a combination of lidocaine and bupivacaine. After the initial injections, the patient does not experience any pain or discomfort.

Before starting local anesthesia, we give most patients oral valium and intra-muscular midazolam (a very fast acting sedative that is very relaxing). While some patients doze off at the beginning of the procedure, others prefer to watch TV, a film, or just chat.

Local anesthesia generally wears off after 4-5 hours, so for transplant sessions lasting longer than this, we will give more anesthesia before the first wears off. With Robotic FUE, there is no discomfort once the procedure is completed and the anesthesia wears off. This is in stark contrast to an FUT strip procedure which can be uncomfortable in the donor area for days to weeks.



212-826-2400
Scroll to Top