From the Academy

Current status of surgery in dermatology

C. William Hanke, MD,a Ronald L. Moy, MD,b Randall K. Roenigk, MD,z Henry H. Roenigk, Jr, MD,y James M. Spencer, MD, MS,c Emily P. Tierney, MD,d Cynthia L. Bartus, MD,e,f,g Robert M. Bernstein, MD, MBA,h,i Marc D. Brown, MD,j Mariano Busso, MD, PA,k Alastair Carruthers, MD,l Jean Carruthers, MD, m Omar A. Ibrahimi, MD, PhD,n,o Arielle N. B. Kauvar, MD,p,q Kathryn M. Kent, MD,r Nils Krueger, PhD,s Marina Landau, MD,t Aimee L. Leonard, MD,u Stephen H. Mandy, MD,v,w,x Thomas E. Rohrer, MD, aa,bb Neil S. Sadick, MD,cc and Luitgard G. Wiest, MD, PhDdd

Carmel, Indiana; Los Angeles, California; New York and Rochester, New York; Boston, Springfield, and Chestnut Hill, Massachusetts; Allentown and Center Valley, Pennsylvania; Coconut Grove, Miami Beach, and Miami, Florida; Vancouver, British Columbia, Canada; Stamford, Connecticut; Hamburg and Munich, Germany; Holon, Israel; Chicago, Illinois; Rochester, Minnesota; and Providence, Rhode Island

An article titled “Current issues in dermatologic office-based surgery” was published in the JAAD in October 1999 (volume 41, issue 4, pp. 624-634). The article was developed by the Joint American Academy of Dermatology/American Society for Dermatologic Surgery Liaison Committee. A number of subjects were addressed in the article including surgical training program requirements for dermatology residents and selected advances in dermatologic surgery that had been pioneered by dermatologists. The article concluded with sections on credentialing, privileging, and accreditation of office-based surgical facilities. Much has changed since 1999, including more stringent requirements for surgical training during dermatology residency, and the establishment of 57 accredited Procedural Dermatology Fellowship Training Programs. All of these changes have been overseen and approved by the Residency Review Committee for Dermatology and the Accreditation Committee for Graduate Medical Education. The fertile academic environment of academic training programs with interaction between established dermatologic surgeons and fellows, as well as the inquisitive nature of many of our colleagues, has led to the numerous major advances in dermatologic surgery, which are described herein. (J Am Acad Dermatol. 10.1016/j.jaad.2013.04.067.)

Learning objectives: Dermatologists have been responsible for multiple advances and refinements in dermatologic office-based surgery over many decades. Dermatologists receive extensive training in office-based surgical procedures during residency, fellowships, and continuing medical education courses. The last update on this subject appeared in the Journal in 1999. This article will document the multitude of advances that have occurred since 1999.

Key words: fellowship; office-based; quality; surgery; training.
TABLE OF CONTENTS

I. Section authors .. p. 2
II. Surgical training in dermatology p. 2
 A. An abbreviated history of dermatologic surgery and early surgical postgraduate courses .. p. 3
 B. Surgical training program requirements in dermatology p. 4
 1) Dermatology training program requirements and board certification by the ABD p. 4
 C. History of fellowship training in dermatologic surgery p. 5
 D. The literature and books of dermatologic surgery p. 7
 1) Journals .. p. 7
 2) Books ... p. 7
 E. History of patient safety and the AAD ... p. 7
 F. Conclusion .. p. 8
III. Advances in dermatologic surgery p. 8
 A. MMS and reconstruction p. 9
 B. Botulinum toxin p. 10
 C. Hyaluronic acid fillers p. 10
 D. Poly-L-lactic acid filler p. 11
 E. Calcium hydroxylapatite filler p. 12
 G. Treatment of tattoos and pigmented lesions p. 14
 H. Nonablative fractional laser resurfacing .. p. 15
 1) Ablative fractional resurfacing .. p. 15
 I. Laser (nonvascular) and energy-based devices p. 16
 J. Liposuction using TLA p. 17
 K. Microdermabrasion p. 17
 L. Dermabrasion p. 18
 M. Chemical peels p. 19
 N. Repair of acne scars p. 19
 O. Hair transplantation p. 20
 P. Sclerotherapy and varicose vein therapy .. p. 22
IV. References .. p. 23
V. Abbreviations and Acronyms p. 2

I. SECTION AUTHORS

Surgical training in dermatology

C. William Hanke, MD
Ronald Moy, MD
Randall K. Roenigk, MD
Henry H. Roenigk Jr, MD

Advances in dermatologic surgery

A. Marc D. Brown, MD
B. Alastair Carruthers, MD, Jean Carruthers, MD
C. Aimee L. Leonard, MD
D. Cynthia L. Bartus, MD
E. Mariano Busso, MD
F. Arielle N. B. Kauvar, MD
G. Kathryn M. Kent, MD, Thomas E. Rohrer, MD
H. Emily P. Tierney, MD
I. Omar A. Ibrahimi, MD, PhD
J. C. William Hanke, MD, Ronald L. Moy, MD
K. James M. Spencer, MD
L. Stephen Mandy, MD
M. Marina Landau, MD, Luitgard G. Wiest, MD, PhD
N. Emily P. Tierney, MD
O. Robert M. Bernstein, MD, MBA
P. Nils Krueger, PhD, Neil Sadick, MD

II. SURGICAL TRAINING IN DERMATOLOGY

Dermatology is an organ-based specialty of the skin, hair, and nails with major subspecialty fields of study in medical disease, pathology, pediatrics, and surgery. Dermatology is similar to other organ-based specialties such as ophthalmology, otolaryngology, and obstetrics-gynecology in which all medical and surgical aspects of the specialty are taught during residency training. Dermatology residents receive extensive training in the structure and function of skin, clinical diagnosis, and pathology, along with

Abbreviations used:

AAD: American Academy of Dermatology
ABD: American Board of Dermatology
ABMS: American Board of Medical Specialties
ACGME: Accreditation Council for Graduate Medical Education
ACMS: American College of Mohs Surgery
ASDS: American Society for Dermatologic Surgery
ASMS: American Society for Mohs Surgery
BoNT: botulinum toxin
CaHA: calcium hydroxylapatite
CO₂: carbon dioxide
Er: erbium
FDA: US Food and Drug Administration
FTC: Fellowship Training Committee
HA: hyaluronic acid
MMP: matrix metalloproteinase
MMS: Mohs micrographic surgery
NASHA: nonanimal stabilized hyaluronic acid
Nd: neodymium
NLF: nasolabial folds
NYU: New York University
PGY: postgraduate year
PLLA: poly-L-lactic acid
RRC: Residency Review Committee
TCA: trichloroacetic acid
TLA: tumescent local anesthesia
YAG: yttrium-aluminum-garnet
medical and surgical treatment of over 3000 cutaneous diseases and tumors. Dermatologists have been responsible for many advances in dermatologic surgery over many decades.1

A postgraduate year (PGY)-1 (medicine, rotating, surgical) is completed before 3 years of dermatology residency training (PGY 2-4). Some dermatology residents complete elective rotations in general surgery, otolaryngology, plastic surgery, and other surgical disciplines during PGY-1, PGY-2, PGY-3, and PGY-4. The surgical training in dermatology is taught during residency as is required and documented by the Accreditation Council for Graduate Medical Education (ACGME). Some residents choose to receive added fellowship training (PGY 5), which is currently available in pathology and surgery (procedural dermatology) as overseen by the ACGME and pediatric surgery, which is overseen by the American Board of Dermatology (ABD). The ABD tests and certifies that dermatologists are competent in all aspects of the specialty including surgery. Subspecialty certification through the ABD is available in dermatopathology and pediatric dermatology, but is not currently available in procedural dermatology.

Many of the surgical procedures that are performed by dermatologists today did not exist 25 years ago. This is also the case for most specialties in medicine. The new procedures are learned by all physicians in the same way after residency. This is done through postgraduate medical education, which includes courses, seminars, and live surgery workshops. The postgraduate courses are attended by practicing physicians and also residents in training. These courses are rich learning experiences that are attended by thousands of dermatologists each year.

A. An abbreviated history of dermatologic surgery and early surgical postgraduate courses

Although surgery has long been part of the specialty of dermatology, a new era of dermatologic surgery began at New York University (NYU, New York, NY) in the 1950s. Dermatologists at NYU became leading practitioners of dermabrasion (Kurtin, Orentreich), chemical peel (MacKee), hair transplantation (Orentreich), Mohs Chemosurgery (Robins), and excisional skin surgery (Popkin). Goldman began performing cutaneous laser surgery at the University of Cincinnati in Cincinnati, Ohio in the early 1960s. The first surgery course to be held at the American Society for Dermatologic Surgery (ASDS) was sponsored by Perry Robins at NYU in 1970, followed by the first 1-year fellowship training program in Mohs surgery in 1970. The ASDS holds its first course in basic surgical techniques for dermatologists in 1975. Early courses were attended by practicing physicians and dermatology residents. These courses are rich learning experiences that are attended by thousands of dermatologists each year.
Academy of Dermatology (AAD) Annual Meeting was directed by Krull in 1967, the same year that Mohs founded the American College of Chemosurgery (now the American College of Mohs Surgery [ACMS]). The American Society for Dermatologic Surgery (ASDS) was started by Leonard Lewis and Sorrel Resnick and 11 other founding members in 1970 (Table I). The ASDS now has more than 5000 members.

The first comprehensive postgraduate courses on dermabrasion/chemical peel were held in New Orleans, LA, in the late 1970s. The course evolved into rotating postgraduate courses that were held in various parts of the country, directed by Henry Roenigk, Sam Stegman, and John Yarborough. The course that was held at Northwestern University Medical Center, Chicago, IL in 1983 included multiple live surgery demonstrations for the first time. Northwestern University later collaborated with the Cleveland Clinic Foundation and the University of California-San Francisco to hold courses in Florida, California, and Arizona. Live surgery demonstrations were beamed via satellite to packed lecture halls. The Skin Disease Educational Foundation later took over administration of the courses. Accreditation of postgraduate courses for continuing medical education became necessary for physician medical licensure and renewal.

Hugh Greenway began a comprehensive cadaver-based cutaneous anatomy course at Scripp’s Clinic in San Diego, CA, in 1981. The course has been held continuously for the last 31 years. Surgery workshops using pig’s feet were also organized in many parts of the country.

Many dermatologists traveled to Madison, WI, for short preceptorships with Fred Mohs in the 1960s and 1970s. The first formal 1-year fellowship training program in Mohs micrographic surgery (MMS) was founded by Robins at NYU in 1970. Shortly thereafter, training programs were started by Tromovitch and Stegman at University of California-San Francisco and Bailin at Cleveland Clinic Foundation under the auspices of the American College of Chemosurgery (now the ACMS), which had been established in 1967. Another organization, the American Society for Mohs Surgery (ASMS) was established in 1990. The ASMS does not require that members have fellowship training in MMS, whereas the ACMS requires it. Tromovitch and Stegman later popularized the Mohs fresh-tissue technique in the early 1970s. This advance allowed immediate reconstruction of skin cancer wounds, which was not possible with the older fixed-tissue technique.

B. Surgical training program requirements in dermatology

Surgical training in dermatology takes place during the 3 years of dermatology residency in programs accredited by the Residency Review Committee (RRC) for dermatology on behalf of the ACGME. Surgical training in dermatology has expanded over the years to encompass a large variety of cosmetic, reconstructive, and dermatologic surgery procedures. The 3 years of dermatology residency is preceded by an introductory year of residency in internal medicine, pediatrics, or surgery.

Dermatology residents have always been taught surgical operative techniques necessary to perform excisional surgery for the treatment of skin cancers. Suturing techniques, local anesthesia, sterilization of instruments, skin preparation, and scar revision techniques have always been a part of dermatology training. The development of the 1-year surgical fellowship programs by the ACMS, beginning with Perry Robins’ training program at NYU in 1970, had the effect of greatly expanding the number of academic surgical faculty dedicated to teaching residents skin surgery in dermatology residency programs and providing surgical procedures to dermatology patients. The number of full-time dermatologic surgeons at every major medical center had the effect of exposing most dermatology residents to sophisticated procedures such as complicated skin flaps, skin grafts, liposuction, laser procedures, scar revision techniques, and MMS. Ed Krull used survey results from dermatology residency programs to change the core ACGME requirements so that all programs were required to teach complex repairs, transposition flaps, rotation flaps, advancement flaps, and skin grafts. MMS was added in 1998, when Randall Roenigk chaired the RRC.

This surgical foundation established during medical school and dermatology residency and augmented by fellowship programs in procedural dermatology has been sustained and built upon in subsequent years of practice through courses and symposia accredited by the Accreditation Council on Continuing Medical Education and offered by educational institutions and professional societies such as the AAD, ASDS, ACMS, and ASMS. Some dermatologists also complete 1- to 2-year cosmetic surgery fellowship training programs administered by the American Academy of Cosmetic Surgery and other non-ACGME-approved fellowships in cosmetic laser procedures.

Dermatology training program requirements and board certification by the ABD. The core of dermatology and dermatologic surgery knowledge
and skills for all graduates of dermatology residency programs is derived from the standard requirements for dermatology residency training. These requirements are established and monitored by the RRC for Dermatology on behalf of the ACGME. The ABD requires graduation from an accredited ACGME-approved residency and passing the ABD certifying examination. The ABD outlines for graduates the surgical subjects that are contained in the certifying examination. These surgical subjects include suturing techniques, anesthesia, electrosurgery, nail surgery, cryosurgery, excisions, hemostasis, sterilization, MMS, flaps (advancement, rotation, and transposition), grafts, scar revisions, complex closures, lasers, phlebology, tumescent liposuction, hair restoration, use of neurotoxins, and use of fillers. These surgical subjects are developed by surgical dermatologists who are experts in these surgical subjects. An educational in-training examination is given yearly to all dermatology residents in addition to the certifying examination, which leads to the distinction of being board certified in dermatology.

Training as outlined by the RRC/ACGME should be sufficient to ensure knowledge or competence in the performance of cryosurgery, dermatologic surgery, cosmetic surgery, and laser surgery. Dermatologic surgery should be given emphasis and should include appropriate local anesthesia, electrosurgery, cryosurgery, laser surgery, nail surgery, biopsy techniques, excisional surgery, advancement flaps, transposition flaps, rotation flaps, and grafts. Residents should have exposure through observation or assisting with hair restoration, Mohs micrographic surgery, sclerotherapy, laser resurfacing, and use of neurotoxins, chemical peels and tissue augmentation. In addition, residents should be provided education relating to cosmetic procedures such as tumescent liposuction, scar revision and dermabration. Didactic training in cosmetic surgery is required by the RRC/ACGME. This surgical training is documented both by the program and the ACGME case log system by the residents. The ACGME case logs are used by all surgical specialties to document resident experience. Based on the program requirements, a lack of experience by residents in key surgical procedures can result in a program citation. The ACGME also uses this system to monitor the surgical experience in a specialty and has plans to make these data public.

The level of training in dermatologic surgery is divided into 3 categories. Dermatology residents should achieve competency in biopsy techniques, destruction of benign and malignant tumors, use of lasers for the treatment of superficial vascular tumors (eg, port wine stains), and excision of benign and malignant tumors with simple, intermediate, and complex repair techniques including flaps and grafts. Significant exposure to other procedures either through direct observation or as an assistant at surgery is required. Examples in this category include MMS and reconstruction of surgical defects, the application of a wide range of lasers and other energy sources, sclerotherapy, botulinum toxin (BoNT) injection, soft-tissue augmentation, and chemical peels.

Program faculty must provide education relating to certain cosmetic techniques without necessarily affording direct exposure. Among these are liposuction, scar revision, and dermabration. The program’s experience in cosmetic surgery may vary depending on the nature and experience of the practice; however, didactic training in this area is required.

Dermatologists are specialists with expertise in the diagnosis and treatment of pediatric and adolescent patients with benign and malignant disorders of the skin, mouth, external genitalia, hair, and nails. Dermatologists have extensive training and experience in the diagnosis and treatment of all types of skin cancers. The dermatologists have expertise in the management of cosmetic disorders of the skin such as removal of excess hair, wrinkles, sun-damaged skin, hair loss, scars, and loose skin. Among the techniques used by dermatologists for the correction of cosmetic defects are laser resurfacing, tumescent liposuction, dermabration, chemical peels, hair transplantation, phlebology, and tightening procedures including face, brow and neck lifting, and injections of fillers.

C. History of fellowship training in dermatologic surgery

The ACMS was formed in 1967 with a principal mission to advocate for and train physicians in MMS. Soon thereafter, the Fellowship Training Committee (FTC) of ACMS was formed and program requirements developed. In the early years the training requirements were modest, but over time and under the leadership of the chairs of the FTC such as Drs Philip Bailin, Ted Tromovitch, Sam Stegman, Rex Ammonette, John Zitelli, Barry Leshin, and Ron Moy, the requirements evolved into a 1-year structured program that required a minimum of 500 MMS cases to be performed by the program with the fellow, along with a diverse array of other topics in cutaneous oncology and reconstructive surgery. Ron Moy, who chaired the FTC for 8 years, and the FTC members implemented the site visits, national matching program (1995), frozen section quality review, more stringent facility criteria, and the
transition to the future ACGME fellowship training programs that are now in existence.

In the early years there were a very few fellowship training programs, most notably at the University of California-San Francisco, the Cleveland Clinic, and NYU followed later by the University of Wisconsin at Madison where Fred Mohs developed the technique.

In the late 1980s, the ABD sought to create a subspecialty in MMS. In the 1970s the ABD had successfully codified the subspecialty of dermatopathology by developing ACGME-accredited standards for training and a subspecialty certifying examination, which greatly benefits all dermatologists to this day. Ed Krull founded the Association of Academic Dermatologic Surgeons in 1988, to promote, support, and critically assess the quality and scope of surgical teaching of residents and fellows by academic-based dermatologic surgeons. The group provided support for the concept of ACGME accreditation of surgical fellowships in dermatology. In 1991, Drs Ed Krull and Irwin Friedberg, on behalf of ABD, with testimony to American Board of Medical Specialties (ABMS) Committee on Certification by C. William Hanke and Martin Braun, proposed the new subspecialty to ABMS. However, the representatives from general surgery, plastic surgery, and otolaryngology were strongly opposed for a variety of reasons and the proposal was defeated.

In the 1990s, Dr Krull was chair of the RRC for Dermatology of the Accreditation Council for Graduate Medical Education (ACGME), which is charged with the oversight of all dermatology specialty and subspecialty training programs in the United States. Dr Randall Roenigk joined the committee in 1994 and succeeded Dr Krull as chair of the committee. After much discussion, Drs Krull and Roenigk led the effort to seek accreditation of a subspecialty training program in dermatologic surgery. The proposal was developed and first finalized in 1997. Unfortunately at the same time Medicare published IL-372, the intermediary letter clarifying the role of teaching physicians at academic medical centers for billing purposes. This ruling was followed by a series of audits (Physicians at Teaching Hospitals [PaTH] Audits). Program directors and department chairs were concerned about the impact of these new rules on their ability to be reimbursed for patient care provided in teaching programs. As a result, the creation of the new subspecialty was delayed as it was thought that ACGME accreditation of the new program might limit the ability of departments to bill for patient care services. There was also opposition from some dermatologists who thought that accreditation would put those without fellowship training at a disadvantage.

In 2000, the RRC decided to reopen the proposal for accreditation in the subspecialty. Between the years of 2000 through 2003, a series of negotiations occurred between specialties represented by the ACGME to vet concerns expressed by general surgery, plastic surgery, and otolaryngology. Some of the concerns centered on the amount of surgical training in dermatology and the name “dermatologic surgery.” At that time, general surgeons thought that the word “surgery” should be limited to specialists who complete training in general surgery. ACGME policy at that time allowed ownership of certain terms by a specialty and hence required that the use of the term “surgery” be limited to the title of specialties that required a general surgery residency; just as the term “dermatology” could not be used by other specialties. For example, surgical specialties such as otolaryngology, ophthalmology, and obstetrics-gynecology do not use the term “surgery” to describe their specialty or subspecialties. After much discussion, a program in procedural dermatology was approved by the ACGME in 2003 allowing the first programs to become accredited in 2004.

Between the years of 2004 and 2012, 57 programs in procedural dermatology were accredited. An important part of the process during this period included dual accreditation/approval from both the ACGME and ACMS. Some members of ACMS were still concerned about giving up the approval process for these programs. Under the leadership of Roenigk, Moy, the ACMS Fellowship Training Committee, the ACMS Board, and ACMS President Whitaker, it was recognized that ACGME accreditation of the fellowships would be a better process in the long run and consistent with that used by almost all specialties and subspecialties in organized medicine. There was a transition from the ACMS site visit accreditation to the ACGME accreditation process that includes ongoing program review, site visits, and review by the RRC and the use of the ACGME case log system to document the fellows surgical experience. The incorporation of cosmetic surgery into the training was a change for some ACMS programs. Fellowship training programs in private practice settings were required to adopt the same policies and procedures that were required of large university residency programs. ACMS completely discontinued the process of approving US programs by 2013 but continued to approve a small number of international programs. The ACMS continues to provide other resources including sponsorship of the annual match, conducting a slide review program needed
for accreditation, receiving grievances from fellows who are trained in private practice programs, and maintaining a forum for discussion between program directors.

After several years of preparation the ABD submitted its application for subspecialty certification in procedural dermatology to the ABMS in 2009. What happened in 2009 was quite different compared with the process in the late 1980s. General surgery, plastic surgery, otolaryngology, and other specialties now recognized that dermatologists had developed a surgical subspecialty in MMS, cutaneous reconstruction, and related procedures that was unique and valuable. They had very few concerns about giving a certification examination in this subspecialty sponsored by ABMS. Concerns about certification came mainly from the specialty of dermatology. One issue centered on the name “procedural dermatology” because it was considered to be too generic and did not properly reflect the practice of those who had been trained. All dermatologists are trained in skin surgery during their residency and most perform surgical procedures daily. In addition, there was concern about whether or not subspecialty certification would have an impact on a dermatologist’s ability to bill insurance companies for surgical services. The ABD put a pause on the process after its first review by Committee on Certification to examine these concerns in more detail. As of this writing, the future of subspecialty certification in procedural dermatology is uncertain.

Subspecialty programs in procedural dermatology remain accredited by the ACGME. Many programs have undergone several reviews and continue to improve through this process. The program requirements have also undergone review and will continue to be improved with input from organized medicine.

Based on a review of claims data from the Center for Medicare and Medicaid Services it is clear that dermatologists perform more surgery on the skin than any other specialty. This is in great part because of our aging population and the epidemic of skin cancer. MMS and the other dermatologic surgical procedures for the treatment of skin cancer continue to be important tools to manage an increasingly significant health care problem in this country. Access to dermatologic surgical care for the treatment of skin cancer and other cosmetic procedures unique to our specialty must be taught in residency and fellowship programs, and be a part of continuing medical education for physicians engaged in lifelong learning. Regardless of whether a dermatologist has taken an added year of fellowship training, it is the expectation of the ACGME, ABMS, and ABD that all dermatologists be competent in the surgical treatment of skin disease.

D. The literature and books of dermatologic surgery

Journals. The founding of the Journal of Dermatologic Surgery by Robins and Popkin in 1975 was an important event in the evolution of dermatologic surgery. The journal has published a steady stream of instructional and research articles covering dermatologic oncology, reconstructive surgery, laser and cosmetic surgery, and cosmetic dermatology. The journal was purchased from Elsevier Science Publishers by the ASDS in 1995. The journal name has evolved from the Journal of Dermatologic Surgery (1975) to the Journal of Dermatologic Surgery and Oncology (1977) to Dermatologic Surgery (1995). Special topic issues such as lasers and fillers are frequently published alongside regular monthly issues.

Other major dermatology journals such as the Journal of the American Academy of Dermatology and the Archives of Dermatology regularly publish articles on many aspects of dermatologic surgery. Other dermatology journals such as the Journal of Drugs in Dermatology also publish surgical articles and special surgical issues.

Books. A multitude of books on dermatologic surgery and oncology have been authored or edited by dermatologists over many decades. The number of new books has steadily increased from 28 (1990-1995) to more than 70 (2007-2012) (Fig 1).

Many of these journals and books are formally reviewed by dermatology residents and procedural dermatology fellows, along with academic faculty and physicians in private practice.

E. History of patient safety and the AAD

The safety of the patient is the most important thing, and the AAD has been active in the
area of patient safety for a number of years. Dermatologists have pioneered minimally invasive outpatient dermatologic surgery procedures that are performed safely and effectively using topical, local, or tumescent local anesthesia (TLA). The outcomes are superior and complications are infrequent and minor. MMS for skin cancer and liposuction using TLA are 2 well-documented examples whereby patients are spared more invasive procedures under general anesthesia.

The AAD was one of the first national specialty organizations to develop a patient safety initiative. The AAD held a Patient Safety Summit on August 7, 2007, in New York, NY. More than 100 AAD leaders and many leaders in other areas of medicine attended. Many patient safety subject areas were covered by experts in the field including:

“Establishing a strategy for patient safety in a medical specialty: lessons from the anesthesia experience” (Jeffrey B. Cooper, PhD, Executive Vice-President, Anesthesia Patient Safety Foundation); “Scope of practice in medicine” (James N. Thompson, MD, President/CEO, Federation of State Licensing Boards); “Scope of practice panel” (William H. Beeson, MD, Vice-President, Indiana Medical Licensing Board); “Scope of practice expansion by nonphysicians” (Stephen H. Mandy, MD); “Lasers and scope of practice” (Roy G. Geronomus, MD); “Day spa nightmares” (Deborah Sarnoff, MD); “Supervision of PAs and NPs” (Roger I. Ceilley, MD); “Mandatory adverse event reporting” (Brett M. Coldiron, MD); “Office accreditation panel” (Duane C. Whittaker, MD, Roy C. Grekin, MD, W. Patrick Davey, MD, Pat Ferrigno, MS); “Dermatology malpractice: a 20-year analysis of malpractice claims against dermatologists” (Sandra I. Read, MD); “Patient safety organizations” (William H. Beeson, MD); “Patient safety research” (Doral Rosauer, MBA, Katie B. Baeverstad, MD); and “The case for a dermatology credentialing verification organization” (C. William Hanke, MD, Pat Ferrigno, MS, William H. Beeson, MD).

After the Patient Safety Summit, an AAD Ad Hoc Task Force on Patient Safety was formed with James S. Taylor, MD, as Chair. The charge of the ad hoc task force was to: (1) define the current state of patient safety and quality in dermatology; (2) evaluate existing academy activities, identify gaps and priorities, and recommend changes in the existing portfolio; and (3) develop a comprehensive strategy for developing a culture of patient safety and quality in dermatology within the AAD. Three task forces of the committee were established: (1) performance measurement; (2) patient safety curriculum; and (3) data collecting and reporting.

The AAD has been an advocate for mandatory adverse event reporting in every state. It is only through verifiable data collection on adverse events that problems can be identified and quantified.6 Solutions can then be crafted to prevent future adverse events. Coldiron et al7-9 reported multiple times on the Florida database for mandatory reporting of adverse events for offices that has been in place since 2000. The most recent report also included adverse event reporting for Alabama.10 Reporting of surgical complications that occurred in the offices were reported by physicians to a central agency in both states. Cosmetic procedures were responsible for roughly half of all adverse events reported in Florida and Alabama. Plastic surgeons reported the greatest number of complications. The majority of the fatalities and complications occurred in patients who received general anesthesia. There were no fatalities reported by dermatologists, and the number of complications was extremely small.

F. Conclusion
The fertile academic environment of academic training programs with interaction between established dermatologic surgeons and fellows, along with the inquisitive and innovative nature of many of our colleagues, has led to numerous advances in dermatologic surgery, which are described subsequently.

III. ADVANCES IN DERMATOLOGIC SURGERY
In October 1999, an article titled “Current issues in dermatologic office-based surgery” was published in this journal.1 The article chronicled the myriad of cutaneous surgical techniques that have been developed and pioneered by dermatologists. Many more advances have occurred since 1999. In March 2012, the Board of Directors of the AAD commissioned the AAD Ad Hoc Task Force on Office-based Surgery to update the previous article. This article is intended as an update, and the reader is referred to the previous article for historical details. The authors and co-authors of the various sections of the new article are all dermatologists who have
been involved in the developments and refinements that have occurred since 1999.

Dermatologists and dermatologic surgeons have continued to demonstrate leadership in office-based surgery and cutaneous oncology. Training in dermatologic surgery is required for all dermatology residents. Some residents undergo additional surgical training through 1-year ACGME-approved fellowship-training programs in procedural dermatology. Of these programs, 57 are currently accredited by ACGME.

Dermatologists are the only specialists in medicine who receive comprehensive training in the clinical diagnosis, basic science, pathophysiology, dermatopathology, and medical and surgical treatment of over 3000 cutaneous diseases and tumors. This foundation is the key to the advancements that have occurred in dermatologic surgery and the other areas of dermatology as well.

A. MMS and reconstruction

MMS has advanced significantly since Fred Mohs first described the surgical technique with zinc chloride paste more than 60 years ago. Tromovitch and Stegman reported on the success of MMS using the fresh tissue technique. Over the past 3 decades, MMS has expanded and flourished and has given us new insights into the management of complex and challenging skin cancers. Although the terms “gold standard” and “standard of care” should be used wisely and sparingly, it is likely the case that MMS has established itself as such for the treatment of nonmelanoma skin cancers. Reviews by Rowe et al established a low recurrence rate of 1% for primary basal cell carcinomas and 5.6% for recurrent basal cell carcinomas treated with MMS. For squamous cell carcinoma, the success rate for primary tumors treated with MMS is approximately 95%.

MMS is highly successful because of precise horizontal sectioning and meticulous microscopic inspection of tumor margins. The most unique aspect of the Mohs procedure is the fact that the physician serves as both the surgeon and pathologist, a role dermatology embraced because of our unique training in both skin surgery and dermatopathology. MMS has grown in popularity and demand because of the exploding incidence of skin cancer (approximately 3.5 million new cases per year of nonmelanoma skin cancer) and increased numbers of highly skilled trained Mohs surgeons performing the procedure. In addition, MMS has been established as an extremely safe, well-tolerated, and highly accepted surgical procedure with a very low incidence of nonlife-threatening complications. Patients who might otherwise be at risk undergoing general anesthesia can safely complete MMS under local anesthesia.

MMS has the potential risk to be an overused procedure, which is why recent appropriate use criteria for MMS have been published. MMS is best used for high-risk basal cell carcinomas including recurrent tumors, those in high-risk anatomic locations, aggressive histologic subtypes, incompletely excised tumors, larger size tumors, and for patients who are immunosuppressed. Likewise, invasive squamous cell carcinomas of the head and neck are indications for MMS. Melanoma in situ (50,000 new cases per year) especially the lentigo maligna subtype, can be challenging because of the location on the face, ill-defined margins, and subclinical extension. MMS (especially with the use of immunostains) has been shown to be highly effective for lentigo maligna with a very low recurrence rate. MMS has been described for the treatment of several rare cutaneous tumors. Although studies can be hampered by smaller numbers and retrospective reviews, there clearly is a robust literature to support MMS as a superior treatment versus standard wide excisions for these unusual cutaneous neoplasms. Rare tumors that are amenable to treatment with MMS include dermato-fibrosarcoma protuberans, microcystic adnexal carcinoma, atypical fibroxanthoma, superficial leiomyosarcomas, sebaceous carcinomas, and extramammary Paget disease. Merkel cell carcinomas, especially those on the head and neck, have been treated with MMS but new standards also recommend the performance of sentinel lymph node biopsies, typically performed by surgical oncologists.

In summary, MMS has been documented to be safe and effective. Its use has increased 400% and currently 1 of every 4 skin cancers is treated with MMS. It is a procedure of ongoing innovation and improvement. Its distinct advantages include: (1) the highest documented cure rate; (2) tissue conservation as a result of smaller margins; (3) safety and tolerability in an outpatient setting; and (4) immediate reconstruction with confidence that clear margins have been ascertained. Challenges include a longer procedure for the patient because of waiting time for the frozen sections and the need for excellent quality control of the laboratory. The preparation of excellent quality frozen sections is a highly skilled procedure and a Mohs surgeon is only as good as the technician and laboratory. MMS has been reported to be a more expensive procedure but studies have documented that it is very cost-effective, especially
compared with excision in an ambulatory surgery center.25,26

Along with the increased use of MMS has come the remarkable advancements and refinements in facial reconstruction. From the earliest days of allowing Mohs defects to heal by second intention, dermatologic surgeons have led the way in creative and novel reconstructions with advanced flaps and grafts. Zitelli27 revolutionized the use of a bilobed flap for nasal reconstruction by redefining its arc of rotation. Likewise, Zitelli28 modified the melial labial transposition flap to make it a cosmetically acceptable 1-stage procedure. Dzubow29 refined and popularized the dorsal nasal rotation flap for nasal defects. Skouge30 described the use of the island pedicle flap for cutaneous lip reconstruction and others defined its use for the forehead, cheek, and nose. Papadopoulous and Triner31 described a myocutaneous island pedicle flap for nasal tip reconstruction. More complex staged interpolation flaps, including paramedian forehead flaps and cheek-to-nose flaps were popularized by Mellette,32 Brodland,33 and Fader et al.34 Cook35 explained modifications of the Spear turnover flap and other creative approaches to alar reconstructions. Advanced skin grafting techniques with cartilage support have been described by Otley36 and Adams and Ratner.37 Finally, dermatologists have always been on the leading front to define when primary closures or even second-intention healing is not only simpler but likely to result in better cosmesis.38

B. Botulinum toxin

Although originally developed for therapeutic use, BoNT received international attention when Jean Carruthers39 and her dermatologist spouse, Alastair Carruthers, published their landmark trial in 1992, demonstrating that small amounts of BoNT injected into the forehead could improve the appearance of glabellar rhytides for up to 3 months. A decade later, Carruthers et al40 published the results of a multicenter, double-blind, placebo-controlled randomized trial that led to the Food and Drug Administration (FDA) approval of BoNT for the treatment of glabellar rhytides. In addition to further research by Carruthers and Carruthers,41,42 many dermatologists—including Becker-Wegerich et al43 and Lowe and Yamauchi44—contributed to the early research that furthered the understanding of the toxin and its use for the treatment of a variety of hyperkinetic facial lines in the upper and lower aspect of the face, neck, and chest with a high degree of patient satisfaction.

Over the next 10 years, the use of BoNT expanded to include facial sculpting and the restoration of symmetry: Flynn et al45 widened eyes, whereas Huigol et al46 and Carruthers and Carruthers47 induced a chemical brow lift. Moreover, it became apparent that BoNT was particularly effective when used in combination with soft-tissue augmentation, laser resurfacing, light-based therapies, and surgery, as reported by dermatologists West and Alster,38 Fagien and Brandt,49 Carruthers et al,50-52 and Khoury et al.53

In 1994, researchers first demonstrated that BoNT produced localized anhidrosis in the faces of patients treated for hemifacial spasm.54 Since then, a number of dermatologists have demonstrated the therapeutic efficacy of BoNT in patients with palmar and axillary hyperhidrosis, including Glogau,55 Shelley et al,56 Heckmann et al,57 Lowe et al,58 Glaser et al,59 and Solish et al.60

Twenty years of cosmetic use has yielded a wealth of information regarding the efficacy and safety of long-term treatment. Dermatologist Arnold Klein61 meticulously detailed side effects and more serious—although rare—complications, whereas Rzany et al,62 Carruthers et al,40,63 and Cohen et al64 analyzed large pools of data to demonstrate minimal adverse effects and establish the long-term safety of BoNT for cosmetic indications.

C. Hyaluronic acid fillers

In the past 15 years, there has been an explosion of interest, use, and availability of hyaluronic acid (HA) filling agents. HAAs have become the leading filler agents worldwide, surpassing collagen products, which had previously dominated the filler market. The most widely used HA fillers are produced from bacterial (\textit{Streptococcus}) fermentation, with this class of dermal fillers designated as nonanimal stabilized HA (NASHA), distinguishing them from earlier animal-sourced products. Currently, there are dozens of NASHA formulations available worldwide. Variations in product performance, tolerance, and durability have been associated with differences in cross-linking, molecular weight, concentration, particle size, and addition of anesthetic agents.

Initial studies establishing the biologic compatibility and stability of HA as a filler material were pioneered by dermatologists Piacquadio et al65,66 in both a guinea pig model and in a multicenter clinical study. Dermatologists Narins et al67 led a pivotal randomized double-blind multicenter split-face study in 138 patients that first demonstrated superior efficacy and comparable safety of NASHA (Restylane) compared with
collagen (Zyplast) over 6 months. Subsequent studies led by dermatologists explored differences in efficacy and tolerability among the various HA fillers emerging in clinical use. In a randomized, double-blind comparison of 150 patients, Carruthers et al.\(^ {\text{68}}\) demonstrated superior durability and comparable safety of the NASHA (Restylane Perlane) at 6 months compared with Hylaform, a cross-linked HA sourced from rooster combs. In a prospective, randomized, comparative, multicenter study of 248 patients, Dover et al.\(^ {\text{69}}\) compared a large-particle NASHA-based filler with a small-particle NASHA filler and found similar efficacy, durability, and safety profiles. Narins et al.\(^ {\text{70,71}}\) further explored the long-term efficacy and effects of different NASHA (Restylane) retreatment schedules, demonstrating persistence of correction beyond the expected 6 to 12 months when retreatment was performed before dissolution of the initial treatment product. Dermatologists were the first to describe in vivo deposition of new collagen after dermal injections of both HA filler and calcium hydroxylapatite (CaHA) via histologic and biochemical analysis. It is postulated that this stimulatory effect may be induced by mechanical stretching of the dermis thereby leading to activation of dermal fibroblasts.\(^ {\text{72,73}}\)

Dermatologists were among the first to establish safety data on HA fillers. Friedman et al.\(^ {\text{74}}\) reported the first retrospective review of adverse reactions associated with early NASHA injection, which included data from over 144,000 patients worldwide. The authors found that localized hypersensitivity reactions were the major adverse event associated with injection, and that these declined dramatically after more purified source material became available.

Dermatologists made significant contributions to the early evolving literature on HA side effects and their appropriate management.\(^ {\text{75-79}}\) One benefit of HA fillers is the unique ability to correct and reverse complications through the injection of hyaluronidase to enzymatically degrade the HA material.\(^ {\text{80}}\) Glogau and Kane\(^ {\text{81}}\) demonstrated a direct correlation between injector techniques such as rapid injection and higher volumes with the rate of local adverse events in a prospective, blinded, controlled study of 283 patients undergoing NASHA injection. Taylor et al.\(^ {\text{82}}\) and Grimes et al.\(^ {\text{83}}\) have established safety and efficacy of HA filler injections in over 300 patients with skin of color in 2 prospective randomized clinical trials. Dermatologists have been leaders in establishing guidelines and consensus recommendations for appropriate use of HA dermal fillers to optimize patient safety and satisfaction.\(^ {\text{84-86}}\)

HA fillers are FDA approved for correction of “moderate to severe facial wrinkles and folds such as the nasolabial folds” (NLF). However, they have been widely and successfully used for off-label volume enhancement of the vermilion lip, perioral area, prejowl sulcus, and tear troughs.\(^ {\text{87-89}}\) Dermatologists Alam et al.\(^ {\text{90}}\), Goldman et al.\(^ {\text{91}}\), and Carruthers et al.\(^ {\text{51,92}}\) have also explored the safety and synergistic effects of combining HAs with other treatment modalities such as radiofrequency,\(^ {\text{90}}\) intense pulsed light,\(^ {\text{91}}\) and BoNT.\(^ {\text{51,92}}\) Dermatologists have helped to establish more recent advances in formulation and technique including combining HA fillers with lidocaine to optimize tolerability\(^ {\text{93}}\) and injection through a blunt-tipped cannula to minimize pain, bruising, and edema.\(^ {\text{94}}\)

As the demand for noninvasive cosmetic procedures continues to grow, the science of injectable soft-tissue fillers, including HAs, will continue to evolve. Dermatologists have been, and will continue to be, at the forefront of evolving HA filler practice, safety, and material technology.

D. Poly-L-lactic acid filler

Injectable poly-L-lactic acid (PLLA) is a filler device used to stimulate collagen production to restore lost facial volume. It differs from other facial fillers such as HA in that PLLA does not directly fill in lines or depressions, but instead induces a host response resulting in a gradual correction of the volume-depleted area.\(^ {\text{95}}\) As volume is restored, however, the NLF, marionette lines, and other undesirable lines are corrected.\(^ {\text{96}}\)

Injectable PLLA has been used worldwide for more than a decade to treat soft-tissue atrophy related to aging, photoaging, and HIV-related lipoatrophy. Safe use of PLLA requires working knowledge of facial anatomy including location of major nerves, vessels, and fat pads. An understanding of the changes to the face that occur with aging/photoaging and HIV-related lipoatrophy is imperative. Full comprehension and awareness of the different properties of the skin and soft tissue in the various cosmetic units of the face is necessary for the safe injection of PLLA.\(^ {\text{95}}\) This knowledge is not unique to dermatologists, but dermatologists have received extensive training on these topics through residency training, fellowship training, and continuing education.

Dermatologists have played an essential role in establishing the safety and efficacy of injectable PLLA. European dermatologists and skin specialists developed the safe injection techniques for this...
unique device before the introduction of PLLA in the United States. Early work by Vleggaar96 and Lowe97 helped establish the injection techniques and demonstrated efficacy of PLLA for sculpting and rejuvenating the aging face. One of the noted frequent side effects of injectable PLLA was the delayed formation of subcutaneous nodules. Through the collective experiences of dermatologists, reconstitution protocols and injection techniques have evolved leading to a notable reduction in the formation of subcutaneous nodules.98-102

Injectable PLLA has been approved in the United States since 2004. The product was initially approved for treating HIV lipoatrophy associated with highly active antiretroviral therapies. Again, dermatologists played a pivotal part in understanding the role of PLLA in the management of this stigmatizing side effect of HIV treatment.103 Hanke, Redbord, and Levy99,100 published an extensive case series on the safety and efficacy of injectable PLLA for treating HIV lipoatrophy. Dermatologists have continued to provide their expertise in treating HIV facial lipoatrophy.

In 2009 PLLA was approved by the FDA for aesthetic use.104 The experience of dermatologists was imperative in gaining FDA approval of the device. Work by dermatologists including Fitzgerald and Vleggaar,105 Palm et al,102 Hanke and Redbord,99 Narins et al,101 and Burgess and Quiroga103 helped establish the efficacy of PLLA for cosmetic use and has continued to demonstrate the safety of this facial volume restoration device.

Injectable PLLA is a safe and effective filler to restore the lost facial volume that contributes to the appearance of the aged face. The skills and knowledge that are needed to perform PLLA injections in the office are taught to dermatology residents during their core training. Frequent publications in the dermatology literature on the use of PLLA further contribute to the knowledge base and keep dermatologists at the forefront of using this unique facial filler. Without the work of dermatologists, this product would not have its established safety profile or be widely available for treating facial soft-tissue atrophy.

E. Calcium hydroxylapatite filler

CaHA is one of the natural components found in human bone. Synthetic CaHA is manufactured as Radiesse by Merz Aesthetics (San Mateo, CA). It consists of microspheres of CaHA, 25 to 45 μm in diameter, in a soluble carboxymethylcellulose gel carrier. Although it is now a popular compound for aesthetic use, synthetic CaHA was originally developed for the treatment of stress urinary incontinence and oropharyngeal repair.106

In 2002, Dr Mariano Busso was the first dermatologist in the United States to explore the use of CaHA for aesthetic enhancement. He developed a novel 3-dimensional vectoring filler injection technique, in which the face is conceptualized in different mobility zones. Vectoring can address surplus skin reduction and structural enhancement.107 Busso developed a series of injection techniques for optimum and safe use of CaHA for malar,108 zygomatic, temporal, and supraciliary regions;109 the lower aspect of the face;110 and nonfacial areas such as hands.111

CaHA has several properties that make it an important tool in the facial recontouring armamentarium.112,113 These include lack of allergenicity, longer tissue residence, and high elasticity (G'). Limiting factors include its radiopacity and tendencies to produce nodules when injected in lips and to show filler visibility after superficial injections. Instead, it should be injected at the junction of the dermis and the subcutaneous level or, when volumization is required, supraperiosteaally.

The pivotal trial compared CaHA with human-based collagen for correction of NLF in 117 patients.112 In the randomized, bilateral, and prospective study, subjects were treated with CaHA in one fold and with collagen in the other; they were followed up for as long as 6 months. Of subjects, 79% had superior improvement on the CaHA side through 6 months ($P < .0000$) using the Global Aesthetic Improvement Scale ($P < .0001$). Significantly less volume of CaHA was needed for optimal correction, compared with collagen ($P < .0001$). Adverse events were generally comparable between the 2 groups, though increases in bruising and edema were noted in the CaHA-treated fold.

Subsequent results of this same trial were reported extending more than 3 years.113 Of the original 117 subjects, 99 subjects were available for all 3 years. Using the Global Aesthetic Improvement Scale, researchers found that, at 30 months, 40% of the CaHA-treated folds were rated as “improved” or better. No long-term or delayed-onset adverse events were reported, including “no reports of nodules, granulomata, or infections.”

Patients reported immediate post-CaHA injection discomfort. To address the issue of pain control, Busso and Applebaum114,115 developed a method of mixing lidocaine with CaHA immediately before injection. A Luer lock-to-Luer lock connector between a syringe containing lidocaine and a syringe containing CaHA allows the lidocaine to
mix with the CaHA without altering the duration of the correction. In 2009, the FDA approved the technique for mixing lidocaine with CaHA.

In the controlled, randomized, patient-blinded, split-face clinical trial, 50 subjects received CaHA without lidocaine in one NLF and CaHA premixed with 2% lidocaine in the other NLF. Subjects reported statistically significantly less pain in the NLF treated with CaHA premixed with lidocaine immediately posttreatment (P < .001) and 48 subjects (96%) expressed a preference for CaHA premixed with lidocaine.

In nonfacial areas, the Busso hand injection technique of CaHA was the basis of the first clinical trial to measure the efficacy of a dermal filler for hand augmentation. A multicenter, blinded, randomized clinical trial addressed the use of CaHA in hand rejuvenation. In this study, 101 subjects were randomized to receive CaHA (76 patients) or to receive no treatment. Using the validated Busso Hand Volume Severity Scale, researchers found that the treatment group was statistically significantly improved compared with the control (P < .0001). No adverse effect on hand function was noted in the study.

The Busso method of CaHA mixed with lidocaine has since been expanded to adjust rheological properties of CaHA and other fillers as well. Today, use of a Luer lock-to-Luer lock connector to tailor filler characteristics has become a familiar technique in the field of tissue augmentation.

F. Laser treatment of vascular lesions

The treatment of congenital and acquired vascular lesions is one of the most commonly requested and performed cutaneous laser and light-based office procedures. The pulsed dye laser was the first laser that was developed based on the theory of selective photothermolysis, a conceptual framework proposed by dermatologists Anderson and Parrish in the 1980s. Their theory revolutionized the treatment of vascular lesions, and continues to serve as the basis for most cutaneous laser and energy-based treatments today.

Clinical studies of the original pulsed dye laser and its subsequent refinements by dermatologists Garden et al., Ashinoff and Geronemus, and others demonstrated its efficacy and high safety profile for treating pediatric and adult portwine stains, infantile hemangiomas, and other vascular lesions. Before the development of pulsed laser therapy, there was no adequate treatment method for portwine stain birthmarks that characteristically hypertrophy with time, leading to cosmetic disfigurement, psychological impairment, and other medical complications. Numerous studies have demonstrated that the best results are achieved when treatment is initiated early in infancy or childhood, and that even with multiple, repetitive treatment sessions in a pediatric population, the risk of scarring or long-term pigment alteration is rare.

Recent studies by dermatologists Izikson et al. and Tierney and Hanke demonstrated the benefit of the more deeply penetrating alexandrite laser for the treatment of hypertrophic and recalcitrant port wine stains. Dermatologists are currently investigating novel techniques to improve port wine stain treatment, including the combination of laser and antiangiogenic or immunomodulatory drugs.

Infantile hemangiomas are common, benign vascular lesions of infancy that are often present on the head and neck. During their growth phase, hemangiomas can obstruct vital organs; they often heal with residual fibrofatty tissue and they negatively impact the psychosocial development of the affected children. Dermatologists Garden et al., Morelli et al., and Geronemus and Kauvar showed that pulsed dye laser can slow the proliferation of hemangiomas during their growth phase, speed their involution, and stimulate epithelialization of ulcerated lesions. Fractional resurfacing lasers are now being used to treat the residuum of involuted hemangiomas.

Dermatologists developed and improved the techniques to treat telangiectases, rosacea, poikiloderma, spider angiomas, cherry angiomas, pyogenic granulomas, and venous lakes. Bernstein and Kligman showed that laser treatment of rosacea-associated telangiectasia and erythema also improves the symptomology associated with flushing and blushing and reduces the number of inflammatory lesions. Studies by dermatologists revealed that the pulsed dye laser, used with repetitive high-energy pulses, effectively treats recalcitrant warts, including plantar and periangual lesions, without the morbidity and scarring observed with other destructive methods. Pioneering work by Alster and Williams using the pulsed dye laser at low fluences transformed the treatment of erythematous and hypertrophic scars, and McDaniel et al. demonstrated its efficacy in treating stretch marks.

In the 1990s, the 532-nm pulsed KTP, 755-nm long-pulsed alexandrite, and 1064-nm pulsed neodymium (Nd):yttrium-aluminum-garnet (YAG) lasers were explored for vascular lesion treatment. Goldman et al. pioneered the use of intense pulsed light, noncoherent light delivered by a flashlamp with millisecond domain pulses, for the treatment
of vascular and pigmented lesions. Studies by dermatologists Dierickx et al.141 showed that longer pulse durations were ideally suited for the treatment of telangiectasia and enabled purpura-free treatment of most acquired vascular lesions and greater patient acceptance of these procedures. The introduction of skin cooling techniques using cryogen, cold air, or contact cooling devices improved treatment outcomes for congenital and acquired vascular lesions by protecting the epidermis and allowing the safe use of higher energy laser pulses.142,143

Kauvar and Lou,144 Kauvar and Khrom,145 Omura et al.,146 and Parlette et al.,147 optimized parameters for the treatment of spider and reticular leg veins by using the more deeply penetrating, near-infrared alexandrite and Nd:YAG lasers. Goldman and Weiss were instrumental in developing endovenous closure, a technique that has largely replaced venous stripping for greater saphenous vein incompetence, whereby a bare laser fiber or radiofrequency-emitting catheter is introduced directly into the vein.148

G. Treatment of tattoos and pigmented lesions

Three years after Dr Theodore Maiman149 created the first laser using a synthetic ruby crystal, dermatologist Dr Leon Goldman150 became the first physician to use therapeutic laser energy on the skin. Goldman observed highly selective injury of pigmented structures after treatment with the laser, prompting further investigation into its potential applications. In the years that followed these initial observations, Goldman et al.150 conducted experiments demonstrating the ability of the ruby laser to selectively destroy pigmented lesions, tattoo, and blood vessels. In 1983, dermatologists Anderson and Parrish120 described their groundbreaking theory of selective photothermolysis, shedding light on the physics at work in earlier observations of Goldman. Their groundbreaking theory that set the stage for the modern laser era states that through the use of the appropriate wavelength of light and pulse duration one may precisely target and destroy a given chromophore.

Since the field’s inception, dermatologists have been at the forefront of laser skin surgery. Armed with the knowledge of selective photothermolysis, in the late 1980s and 1990s pioneering dermatologists such as, Geronemus, Kilmer, Wheeland, Goldberg, and Anderson151,152 continued to explore the clinical use of lasers for the treatment of both endogenous and exogenous pigment in the skin. The theory of selective photothermolysis predicted that the small size of melanosomes and tattoo particles would benefit from the use of very short pulse durations, in the submillisecond range. Clinically, this has been accomplished through the use of Q-switched lasers. Today the Q-switched ruby, Q-switched Nd:YAG, and Q-switched alexandrite lasers remain the workhorses for the treatment of pigmented lesions. However, over the past decade there have been many exciting discoveries, innovations, and new additions to the armamentarium.

Although Q-switched lasers emit laser light with pulse durations in the nanosecond range, data now suggest tattoo pigment particles may be more precisely targeted and completely destroyed by even shorter pulse durations, in the picosecond range. In 1998, dermatologists Ross et al.153 treated 16 black tattoos in a split lesion study with a Q-switched Nd:YAG laser and a picosecond Nd:YAG laser. While holding all other parameters constant, picosecond laser pulses were more efficient at clearing tattoo pigment than nanosecond domain pulses. One year later, dermatologists Herd et al.154 demonstrated superior tattoo clearance in a guinea pig model with a picosecond titanium:sapphire (795-nm) laser versus the Q-switched alexandrite (755-nm) laser. In a more recent study, Izikson et al.155 showed superiority of a picosecond laser when treating tattoo in a pig model when compared with a nanosecond laser of similar wavelength.

Another study by Saedi et al.156 also showed superiority of the picosecond alexandrite laser in tattoo removal. Benign pigmented lesions and colored tattoos also respond favorably to treatment with picosecond laser pulses. Dover et al.157 achieved 100% clearance of pigmented lesions by 2 treatments with a picosecond alexandrite laser. Brauer158 found this same laser to be effective in clearing difficult-to-treat blue and green tattoos.

Depending on color, age, and mechanism of placement, tattoo removal may require 6 to 10 treatments or more. Typically treatment sessions are spaced at 4- to 6-week intervals, necessitating that the patient return for multiple visits over a treatment period that may span years. However, recent work by dermatologists Kossida et al.159 suggest that this observed time between treatment sessions may be unnecessary. In their study 18 tattoos were divided in half and randomized. One half was treated with a single pass from a Q-switched alexandrite laser while the other half was treated with 4 passes with the same laser separated by 20 minutes. At 3 months the 4-pass treatment showed significantly greater clearing than the conventional single-pass treatment, often with complete tattoo clearing after the single treatment. This new
technique may significantly reduce the number of treatment visits to clear tattoos.

In 2004, another breakthrough in laser skin surgery introduced a different approach to the elimination of unwanted skin pigment. Fractional photothermolysis, first described by Manstein et al., delivers laser light to only a fraction of the treated surface area by splitting it into many microbeams. Vertical microscopic columns of tissue damage are created leaving intervening tissue intact and allowing more rapid healing. Using a novel fractionated 1540-nm nonablative laser, dermatologists Laubach et al. observed the microepidermal necrotic debris generated by the laser to be eliminated transepidermally. As the microepidermal necrotic debris was eliminated it carried excess and unwanted pigment with it, acting as a vehicle for controlled melanin release. Later it was confirmed that dermal necrotic debris created may be eliminated in the same manner.

Fractional photothermolysis has proved to be effective for many disorders of hyperpigmentation. Dermatologists Kouba et al. successfully treated nevus of Ota in Asian skin with a fractionated 1440-nm Nd:YAG laser without resultant postinflammatory hyperpigmentation. Dermatologists Weiss and Geronemus showed improved tattoo clearing when conventional Q-switched pigment lasers were combined with fractionated devices.

One of the benefits of nonablative fractional photothermolysis as a means of pigment elimination is the low rate of posttreatment pigmentary complications, especially in darker skin. This attribute may be particularly useful in a condition such as melasma, which typically occurs in Fitzpatrick skin types III to V. Rokhsar and Fitzpatrick showed a high rate of response in melasma treated with 1550-nm erbium (Er)-doped fiber laser. Rokhsar and Giocon and Katz et al. both demonstrated the 1550-nm Er-doped fiber laser to be effective in the treatment of postinflammatory hyperpigmentation as well. The fractionated 1927-nm laser was also shown to be very effective in the treatment of melasma by Polder and Bruce.Recently, the use of very low fluence Q-switched Nd:YAG devices to treat melasma has been shown to be very effective in studies by Polnikorn, Jeong et al., and Kauvar.

Dyschromia, universally a component of photodamaged skin, responds to nonablative fractional photothermolysis as well. Dermatologists Wanner et al. observed improvement in the dyspigmentation of photodamaged skin after treatment with 1550-nm Er-doped fiber laser. Other non-Q-switched devices such as intense pulsed light and pulsed dye lasers operating in the millisecond domain have also been shown be effective in the treatment of epidermal pigmented lesions.

H. Nonablative fractional laser resurfacing

Dermatologists Manstein et al. pioneered the science of fractional resurfacing, a novel concept in which a device emits light in a pixilated fashion, producing a field of microthermal zones and small columns of thermal injury to the skin. Fractional emission of light to the skin promotes rapid collagen remodeling and re-epithelization and clinically manifests in a more advantageous side-effect profile and greater improvement in skin texture and tightening as a result of the increased depth of dermal injury.

Manstein et al.first postulated that fractional resurfacing may have a role in the treatment of skin laxity and textural anomalies as a result of their work with a prototype device that demonstrated tissue shrinkage in tattoos. In 2006, Hantash et al. further expanded upon the work of Manstein et al. and validated with histologic studies the mechanism of tissue injury and repair after fractional resurfacing. They used immunohistochemistry with human antielastin antibodies to identify that the product of thermal damage, degenerated dermal material, is shuttled up through the epidermis and ultimately, exfoliated through the stratum corneum within 7 days after injury. This hallmark discovery identified that fractional resurfacing is the first nonablative laser technology to result in removal of damaged dermal material through a perforated dermoepidermal junction. In 2006, Laubach et al. provided the clinical correlate to this study describing how fractional resurfacing results in improvement in dyschromia through creation of microscopic necrotic columns of epidermal debris containing melanocytes destroyed by thermal columns of injury. With this novel mechanism of injury and repair of dermal and epidermal zones of injury, a number of dermatologic investigators have used fractional resurfacing as a unique therapeutic option for the treatment of a diverse number of conditions of epidermal and dermal biology, including photoaging of the face, neck, and hands; melasma; and acne scarring.

Ablative fractional resurfacing

Although many studies have demonstrated significant benefits of nonablative fractional resurfacing, with minimal adverse effects, the resulting improvement in skin texture and pigmented variation fell significantly behind those of traditional ablative carbon dioxide (CO2) and Er:YAG laser
resurfacing and medium to deep chemical peels. As a result of the need for greater results with fractional photothermolysis with similar minimal side-effect profiles, Hantash et al180,181 published the first results with an ablative fractional CO\textsubscript{2} device in 2007. The excitement of this discovery stemmed from initial reports of the efficacy of ablative fractional photothermolysis in skin tightening, with similar results to those of traditional ablative CO\textsubscript{2} and Er:YAG resurfacing, with advantages of only 5 to 7 days of downtime and less risk of permanent scarring and dyspigmentation. Ablative fractional resurfacing has recently demonstrated significant promise in moderate to severe acne scarring in terms of clinical improvement and topographic mapping of decreases in individual scar volume.182 In addition, ablative fractional resurfacing has shown great promise in reducing skin surface and texture abnormalities, including moderate to severe rhytides and skin laxity of the face, including the neck, chest, and hands.183-185

Hantash et al181 introduced the first ablative fractional CO\textsubscript{2} device in 2007, with a similar column of thermal coagulation as with the nonablative fractional device of Manstein et al160 with the differentiation of technology of a confluent column of tissue ablative injury from the dermis through the stratum corneum. Using immunohistochemistry, Hantash et al180 demonstrated persistent collagen remodeling that occurred for at least 3 months after injury with an ablative fractional resurfacing device. Subsequently, dermatologists Goldberg et al186 demonstrated clinical improvement in photoaging and histologic and ultrastructural change in collagen deposition on both light and electron microscopy.

Resurfacing of the face with ablative fractional resurfacing marks a significant advantage over traditional ablative resurfacing, where significant risks of prolonged erythema, scarring, and dyspigmentation complicate treatment. Stebbins and Hanke183 treated a series of patients with photoaging of the hands and noted significant improvement in wrinkles, pigment, and texture, with no adverse effects. Resurfacing of the neck is complicated by unpredictable and prolonged wound healing owing to the ultrastructure of the skin with a decreased number and density of pilosebaceous units, which is thought to delay re-epithelialization and increase scarring risk. Tierney and Hanke184 treated a series of patients with moderate to severe photoaging and laxity of neck skin, and found significant improvement in skin texture, skin laxity, and overall cosmetic outcome with ablative fractional resurfacing.

Sukal et al187 first evaluated treatment of eyelid skin laxity with nonablative fractional resurfacing where investigators noted that patients experienced improvement in eyelid skin tightening and had a significant improvement in eyelid aperture as a result of skin tightening achieved with fractionated resurfacing. Tierney et al185 performed a single blinded study with an ablative fractional CO\textsubscript{2} device and observed significant improvement in lower eyelid laxity with 2 to 3 sessions.

I. Laser (nonvascular) and energy-based devices

Dermatologist Leon Goldman et al188 was the first adopter of laser technology in medicine applying the work of American physicists such as Charles Townes and Theodore Maiman to treat a variety of skin conditions. In 1983, Anderson and Parrish120 revolutionized the specialty of laser surgery by proposing the theory of selective photothermolysis. The Department of Dermatology at Harvard Medical School encompasses the Wellman Center for Photomedicine, headed by Anderson, and is responsible for the majority of advances in modern laser medicine and energy-based devices. Notably, roughly half of the technology developed at the Wellman Center of Photomedicine has applications beyond the skin, and has led to major advances in other specialties including ophthalmology, gastroenterology, and cardiology, thus highlighting the leading role dermatologists have played in advancing medicine in general.

The development of pulsed lasers based on the theory of selective photothermolysis has led to safe and effective treatment for vascular lesions, including many pediatric vascular malformations, pigmented lesions, tattoos, the permanent removal of hair, and photoaging/resurfacing.189 Lasers have also been found to be useful for medical dermatologic conditions, such as psoriasis.190 Current investigations by the dermatologists Hongcharu et al191 are developing novel future applications of selective photothermolysis, including the treatment of fat and acne with lasers. The use of photodynamic therapy to treat acne, actinic keratoses, and non-melanoma skin cancer has also been pioneered by many dermatologists. Fractional photothermolysis developed by dermatologists Anderson et al192 has revolutionized the treatment of scarring. Interestingly, fractional laser treatments hold the potential to impact medicine beyond dermatology, as it allows for the systemic delivery of large molecules across the skin barrier.193 Numerous contributions to laser surgery have also come from the Beckman Laser Institute at University of California-Irvine, where dermatologists, other physicians, and basic scientists collaborate to advance laser medicine.
Innovation by dermatologists has resulted in the development of other devices within the electromagnetic spectrum or through controlled cooling. Dermatologists Manstein et al.160,194 developed a novel method of noninvasive localized fat removal through the controlled cooling of skin. The use of focused ultrasound for skin tightening was also developed by Laubach et al.195 and clinical trials performed by dermatologists such as Alam et al.196 The fractional treatment model has also been extended to radiofrequency to result in skin tightening and elastin production. Clinical studies have been led by dermatologists Hruza et al.197 and Alexiades-Armenakas et al.198 A microwave-based device to treat axillary hyperhidrosis was also guided in the earliest clinical testing by several dermatologists.199

\section*{J. Liposuction using TLA}
Several US dermatologists, including Saul Asken200,201 and Sam Stegman and Ted Tromovitch,202 began performing liposuction using local anesthesia in the mid-1980s. Asken200,201 was the first dermatologist to author 2 elegantly illustrated books on the subject. Liposuction safety took a major step forward when Jeffrey Klein203 described the tumescent technique in 1987. The work of Klein has been truly revolutionary in that liposuction could be performed safely and effectively on awake patients thereby avoiding the risks of general anesthesia. Bleeding was minimized with the technique of Klein and the cosmetic results were excellent. Multiple studies by dermatologists have demonstrated the safety and effectiveness of the tumescent technique.204-206 The tumescent technique was also adapted by nondermatologists who performed liposuction using general anesthesia. However, the safety profile for liposuction changes when general anesthesia is added. Guidelines for the safe use of TLA have been published on multiple occasions by the AAD and the ASDS.207,208 When these guidelines are followed, the safety of patients undergoing liposuction using TLA is maximized, and significant postoperative complications are minimized.209,210 To date, there have been no documented fatalities from liposuction using strictly TLA on awake patients when safety guidelines are followed.

\textit{Tumescent Technique} was the title of Klein’s211 hallmark book on microcannular liposuction published in 2000. A more descriptive term, “tumescent local anesthesia,” was first used in the title of a German textbook on liposuction in 1999.212 The book \textit{Tumescent Local Anesthesia} was published in English in 2001.213 Klein’s book is currently out of print, but other books have been published on the subject.214,215

\section*{K. Microdermabrasion}
Since ancient times it has been appreciated that removing the superficial layers of the skin ultimately results in improved appearance of the skin. During the 20th century dermatologists led the way in resurfacing techniques such as chemical peels and wire-brush dermabrasion, then into the 21st century with ablative and fractionated laser resurfacing. Among the gentler resurfacing techniques is microdermabrasion. The first mention of this technique in the medical literature is found in the dermatology journal \textit{Dermatologic Surgery} when Tsai et al.216 discussed the use of this device for acne scars. Since that time microdermabrasion has found widespread acceptance in cosmetic practice.

Microdermabrasion originally consisted of a hand piece connected to a suction line that drew the skin gently into the hand piece itself. Then, a second line blew aluminum oxide crystals onto the skin to produce a gentle abrasion. Histologic studies carried out by dermatologists suggest the technique removes only the stratum corneum,217,218 but there may be a contribution of the suction itself to the success of the technique.218 Detailed molecular studies, carried out by dermatologists at the University of Michigan,219 have convincingly demonstrated biochemical changes associated with dermal remodeling with this procedure. These changes include increased gene expression of c-Jun component of activator protein 1, interleukin 1-beta, tumor necrosis factor-alpha, and matrix metalloproteinases (MMP) associated with dermal remodeling (MMP-1, MMP-3, MMP-9). Further studies from the same group also found molecular changes associated with the wound-healing process including induction of cytokeratin 16 and activation of the activator protein-1 transcription factor in the epidermis.220 Again, induction of MMP-mediated degradation of the extracellular matrix in the dermis was observed, and significant dermal remodeling as evidenced by induction of type I and type III procollagen, and collagen production enhancers heat shock protein 47 and prolyl 4-hydroxylase was seen.

Since the original aluminum oxide crystal devices were introduced, a number of modifications have appeared on the market. These modifications were induced by a desire to avoid the use of aluminum, which has been suggested to be associated with the development of Alzheimer disease,221 but not convincingly so. One modification simply substituted sodium chloride for aluminum oxide crystals. More recently, small metal plates coated with diamond dust have been incorporated into the hand piece to replace any crystals at all. The skin is drawn into the
hand piece, and then rubbed with the diamond fraise plate to produce a superficial abrasion.

Beyond cosmetic use, dermatologists have used these devices to increase penetration of topical medications. For example, dermatologists Katz et al. demonstrated microdermabrasion used before application of topical d-aminolevulinic acid for photodynamic therapy dramatically improved clinical response to the photodynamic therapy procedure, presumably by enhanced penetration of the aminolevulinic acid. It has now become common practice to combine microdermabrasion with topical medications to enhance penetration of the topical itself. Dermatologists have combined microdermabrasion with medications as diverse as 5-fluorouracil itself. Dermatologists have combined microdermabrasion with medications to enhance penetration of the topical itself. Dermatologists have combined microdermabrasion with medications as diverse as 5-fluorouracil in a report that suggested the combination was more effective in treating vitiligo compared with using 5-fluorouracil alone. Microdermabrasion is now firmly established as a gentle cosmetic procedure and a device to enhance topical medication and product delivery.

I. Dermabrasion

Over the past century, dermatologists originated, developed, and mastered the techniques of resurfacing the skin by the use of dermabrasion. “Cold steel” dermabrasion is a means of removing the epidermis by means of a rotating diamond fraise or wire brush to create a papillary or mid-dermal wound. Subsequent healing results in the formation of new collagen and a renewed epidermis generated from cells deep within the follicles, without a scar. The reorganized collagen and fresh epidermis provide superb cosmetic improvement in actinically damaged or scarred skin. This was first described in 1905 by Kronmayer, a dermatologist in Germany. He adapted the use of power tools and skin refrigeration to the technique. Abner Kurtin, a New York dermatologist, developed the wire brush and its adaptation to a power dental tool to treat scars and wrinkles. Burks treatise modernized the wire-brush technique and expanded the scope of the procedure in the late 1950s. These advances energized Orentrich, Ayres, and others to refine the procedure further in the 1970s and 1980s. Nelson et al. contrasted the effects of wire-brush and diamond fraise methods, and then used immunohistochemistry to show the development of transforming growth factor β, procollagen, and type I and III collagen after dermabrasion in photoaged skin. Mandy and others improved the preoperative and postoperative management of dermabrasion by the preoperative use of topical retinoids, and the postoperative use occlusive dressings as described by Mandy and Monheit. Many practitioners of the art have different preferences as to the use of wire brush versus diamond fraise for abrasion, but the most important element is prior hands-on training in a preceptor environment. An area in which dermabrasion has recently changed is in pain management during the procedure. In prior years, chlorofluorocarbon refrigerant aerosol spray was used to anesthetize and solidify the skin.

By freezing the skin, it became simultaneously numb and rigid, facilitating the sanding while preventing pain. Controversy about the possible scarring caused by freezing was described by Hanke et al. but became mute after chlorofluorocarbons were banned from production in the United States in 1996 because of their theoretical atmospheric impact.

Consequentially, analgesia today involves regional nerve blocks described by Countryman and Hanke and supplementation with modified TLA also described by Hanke. These techniques can provide adequate full-face anesthesia for dermabrasion and laser procedures as well.

As lasers have become the most frequently used method of resurfacing, some believe that dermabrasion will soon be absent from the dermatologic tool box. Yet the cost of the equipment is far less than lasers, is technologically stable, and consumes little space. The procedure has broad application in the treatment of actinic damage, tattoos, and traumatic, burn, surgical, and acne scars. Fitzpatrick et al. has shown that the ultrastructural changes seen after laser, trichloroacetic acid (TCA) peeling, and dermabrasion are all comparable. Giese et al. showed that at 6 months dermabraded skin was stronger and more supple than skin after phenol peel. Dermabrasion remains an effective, economical, and some might argue superior, resurfacing modality addressing many indications. Perhaps the single impediment to its remaining a vital part of the dermatology armamentarium is that as the artisans in this procedure retire, there will be few left to provide the hands-on training necessary to be proficient in its application.
M. Chemical peels

During 1980s Stegman243 paved the way for a scientific investigation of chemical peels by analyzing the histologic sections of human skin after TCA and phenol peels. He further compared the effect of occluded versus unoccluded procedures.

Unfortunately dermatologists, with a few exceptions, gave up almost completely in recent years the privilege of performing deep chemical peels, leaving this field to other medical specialties.244

From the end of the 20th century dermatologists concentrated their effort in the optimization of the medium-depth peels. Various combinations have been used to increase the efficacy of TCA peel without affecting its safety. Brody and Hailey245 implemented the combination of TCA with CO\textsubscript{2} freeze. Monheit246 publicized the combination of TCA and Jessner solution, whereas Coleman and Futrell247 suggested skin pretreatment with glycolic acid to create a more even penetration of TCA. CROSS technique (chemical reconstruction of skin scars), in which highly concentrated TCA is applied topically into ice-pick acne scars, was described in 2002 by a group of Korean dermatologists.248

Dermatologists Van Scott and Yu249 revealed the properties of alpha hydroxy acids as both topical skincare and peeling agent. Kligman and Kligman250 revived the salicylic acid as a superficial peeling agent by increasing its concentration above that available in Jessner solution. After light-based technologies entered the cosmetic market, the necessity of chemical peels was questioned. Rubin251 reviewed combination techniques for full-face medium-depth peel with perioral and periorbital CO\textsubscript{2} laser resurfacing. Grimes252,253 assessed the safety of chemical peeling procedures in darker-skinned racial-ethnic groups. However, without the triple combination of tretinoin, hydroquinone, and dexamethasone, developed by Kligman and Willis254 performance of deeper peels on dark-skinned individuals would be impossible. In the recent years the effect of chemical peeling on photodamaged skin with ultraviolet irradiation has been studied by a group of dermatologists from Nippon Medical School in Tokyo, Japan.255 They demonstrated in an animal model a positive preventive effect of chemical peeling on photocarcinogenesis.

N. Repair of acne scars

Facial scarring associated with moderate to severe acne in teenage and early adult years is a common concern and reason for presentation to dermatologists. Acne scars arise from decreased collagen formation in the normal wound-healing and remodeling process resulting in visibly depressed scars. Treatments for acne scars are highly specific to the type of scar morphology (ie, rolling, boxcar, ice pick), patient’s skin type, and patient’s age and distribution of scars. Dermatologists have developed a comprehensive understanding of which patients will benefit from which treatment approach as a result of their understanding of wound remodeling and scar pathophysiology.

The current armamentarium of treatment approaches for acne scarring ranges from superficial approaches, such as glycolic acid, chemical peels, topical tretinoin, and topical hydroquinone for skin surface improvement and pigmentary variation, to more moderate approaches to address deeper and widespread scarring, such as scar subcision, dermabrasion, punch grafts, ablative CO\textsubscript{2}, and Er:YAG laser resurfacing and most recently, fractional photothermolysis.

Dermatologists Alam et al256 reported on the specificity of the technique of subcision for patients with extensive rolling scars, where significant improvement in textural abnormalities can be achieved with this minimally invasive, low-risk technique. Fulchiero et al257 evaluated the effects of combination therapy with subcision and the 1320-nm Nd:YAG nonablative laser in patients with severe rolling and boxcar acne scars and found the combination treatment provided significant improvement in scar topography with added improvement in scar pigmentation and overall softening of scar morphology with the addition of the laser resurfacing. For more extensive scarring, ablative laser resurfacing, using CO\textsubscript{2} and Er:YAG lasers, has been performed by dermatologists for acne scarring for the last 2 decades. Dermatologists Alster and West258 reported on a series of 50 patients with moderate to severe acne scars with improvement of 81.4\% in all patients. However, the adverse effects experienced were significant, where 36\% of patients had transient hyperpigmentation, and all patients had a significant degree of posttreatment erythema that persisted at 3-month follow-up.

In the last decade, fractional resurfacing for acne scars has been developed by dermatologists Manstein et al160. The significance of fractional resurfacing for acne scarring is associated with a significantly lesser degree of risk of posttreatment induction of pigmentation and scarring. The pixilated nature of fractional resurfacing, in which the laser stimulates the adjacent stem cells in adjacent intact columns of tissue, promotes collagen remodeling and neocollagenesis and results in the clinical improvement in the atrophic component of acne scarring. Dermatologist Roy Geronemus176
was the first to report on fractional photothermolysis for acne scarring, where 17 subjects with ice-pick, boxcar, and rolling scars received a series of 5 treatments. No instances of posttreatment hyperpigmentation, hypopigmentation, or scarring were observed.

A recent consensus statement about the use of the nonablative fractionated laser by Sherling et al.259 divided acne scars into 2 categories: distensible or nondistensible scars. Distensible scars improve more readily with fillers and laser resurfacing than nondistensible scars. Physicians may consider doing punch excisions of nondistensible acne scars, especially narrow, deep acne scars (ice-pick scars) before nonablative laser resurfacing. The panel contended that nonablative fractional lasers improved the appearance of acne scars by as much as 50%; however, treatment requires an extensive series of 4 to 5 treatments, each spaced 1 month apart. Uniquely, nonablative fractional resurfacing has been shown to improve acne scars in patients with darker skin phototypes (IV-VI) with minimal risks of postinflammatory hyperpigmentation.260

Although the initial reports of nonablative fractional laser technology for acne scarring were promising, recent work has shown that this technology provides limited efficacy in the treatment for deeper scars, such as those of the ice-pick morphology, with a rapid drop-off in depth from the surface. Most recently, the advent of ablative fractional resurfacing as a safe and effective treatment for acne scarring represents a significant advance. It promotes greater efficacy in atrophic scars through the delivery of high fluences to reticular dermal tissue and results in efficacy in a decreased number of treatments compared with nonablative fractional resurfacing.

Ortiz et al.261 presented the first results of a fractionated CO2 device for the treatment of acne scarring. A total of 15 subjects underwent up to 3 treatments. Patients with a diversity of skin types (I-V) were treated with no complications such as short- or long-term hyperpigmentation reported. Of patients, 87% sustained significant improvement in the appearance of acne scarring at 3-month follow-up visits.

In 2008, dermatologists Chapas et al.182 published the results of the largest study of an ablative fractional resurfacing device to date, which resulted in significant improvement in patients with moderate to severe acne scarring. In vivo studies by Hantash et al.181 with this device have shown tissue ablation and thermal effects as deep as 1 mm into this skin. This likely accounts for the effect on moderate to severe acne scarring observed. Side effects with the ablative fractional device were mild to moderate, including posttreatment erythema, edema, and petechiae, all of which resolved within 7 days after treatment. Most importantly, unlike traditional ablative CO2 resurfacing, no incidence of delayed dyspigmentation was noted during the treatment interval or during the 3 months of follow-up posttreatment.

The high degree of efficacy in the absence of significant adverse side effects makes fractional resurfacing a novel and safe addition to the treatment armamentarium for acne scarring.

O. Hair transplantation

The dermatology residency is unique in that it trains its physicians in the biology of hair follicles, encourages research in both the basic science and clinical aspects of hair, and teaches its residents to perform hair transplantations. Hair transplantation was pioneered by the dermatologist Norman Orentreich. Dermatologists continue to make major contributions to this very specialized branch of medicine.

Dermatologist Bobby Limmer262 had the novel idea of using a microscope to aid in the dissection of grafts to avoid follicular transection. His method was described in his 1994 article, “Elliptical donor stereoscopically assisted micrografting as an approach to further refinement in hair transplantation.”

The following year, dermatologists Bernstein et al.263 laid down the conceptual framework for follicular unit transplantation in their 1995 article, “Follicular transplantation.” In 1997, they detailed its clinical application in the paired articles, “Follicular transplantation: patient evaluation and surgical planning”264 and “The aesthetics of follicular transplantation.”265

The 2 advances, the application of the stereomicroscope to follicular dissection and the use of follicular units as the basic element of hair transplantation, arose from a background in dermatology. They moved the field of hair restoration surgery from plugs and mini-micrografting, where this basic anatomical feature of the hair follicle was ignored, to follicular unit transplantation, where the follicular unit became sacrosanct. These 2 ideas, when put to clinical use, allowed the once elusive goal of a completely natural-looking hair transplant to finally be achieved.

Stereomicroscopic dissection is a powerful tool for avoiding follicular unit damage when isolating the units from a donor strip; however, it is unable to prevent transection when the strip is first removed from the scalp. For more than 25 years the donor strip had been excised from the surrounding tissue using a scalpel. It took dermatologist Robert
Haber to design a spreading device that could remove the strip using blunt manipulation. This innovation helps surgeons reduce follicular transection in the important first step of a follicular unit transplantation procedure.

A number of hair-implanting devices have been devised over the years, but none have been as popular as the Choi hair transplanter. This ingenious hand-held device, created by the dermatologist Yung Choi and his colleague Jung Kim in 1992, simultaneously creates a recipient site and inserts a hair-bearing graft that had been loaded into its chamber. It was equally as useful for the micrografts of 20 years ago as it is for the follicular unit hair transplantations performed today.

Limmer suspected that the time grafts were held outside the body was an important variable in graft survival. In a landmark study, he showed a high, but diminishing, survival for micrografts held in chilled saline for the first 8 hours. Dermatologist Jerry Cooley took it a step further, exploring whether the characteristics of the holding solution itself can be modified to enhance the survival of follicular unit grafts. With his work on both ischemia-reperfusion injury and storage injury, Cooley has shown that the use of antioxidants to lower free radical activity can significantly increase graft survival time. This is an important modification of the hair transplantation procedure because, over the years, the number of grafts transplanted per session and the length of time grafts are held outside the body continue to grow.

Dermatologist Dow Stough, appreciating the inexorable progression of androgenetic alopecia, was one of the first physicians to stress a conservative, long-term approach to hair transplantation. This included: creating an irregular pattern of single-hair grafts at the frontal hairline; using a mature, adult pattern for its position; and focusing on restoring hair to the frontal scalp. Most importantly, he encouraged doctors to delay hair transplantation in younger patients until their hair-loss patterns could be better assessed and their expectations set appropriately.

Stough, with dermatologist O’tar Norwood, founded the International Society for Hair Restoration Surgery, an organization with over 800 physician members that has become the foremost international association of hair restoration surgeons. Norwood also launched the bimonthly journal Hair Transplant Forum International that now serves as the educational hub through which hair restoration surgeons around the globe communicate new ideas and present preliminary scientific data in an informal, but timely, way. Stough, with fellow dermatologist Haber, has published 2 concise, but excellent, texts on hair replacement.

Dermatologist Walter Unger et al edited Hair Transplantation, the first comprehensive multiphysician reference textbook dedicated to hair transplantation surgery. Now in its fifth iteration, this encyclopedic series of textbooks has become the standard reference text in the field. Unger et al has served as an important cautionary influence on the impetuosity of many newer members of our profession. He astutely warned that ideas, which initially seem to hold promise, warrant further scientific investigation before being adopted.

The office clinician is unable to precisely measure the natural progression of hair loss and its response to treatment. Densitometry can assess the percent of hair affected by miniaturization, but is unable to quantify the wide range of hair diameters seen in androgenetic alopecia. Dermatologist Bernard Cohen cleverly solved this problem with an instrument called the cross-section trichometer. This instrument measures hair mass: the cross-sectional area of a bundle of hair present in a premeasured area of scalp. It detects small changes in both hair density and diameter, and is an objective way to measure the effectiveness of various therapies provided by the hair restoration physician.

A method of removing follicular unit grafts directly from the scalp, without the need for a linear incision, had been worked out by an Australian physician in the 1990s. He was, however, secretive with his techniques, and few other doctors attempted to duplicate this new procedure. With the publication of the article, “Follicular unit extraction,” by Rassman et al in 2002, the follicular unit extraction procedure gained popular appeal and was rapidly adopted by doctors worldwide. The authors cautioned on the limitations of this harvesting technique and the risk of follicular damage. Dermatologists Berman, Zering, and Bernstein—as well as their colleagues in other specialties—continue to work on the problem of harvesting in follicular unit extraction, with the application of robotic technology showing particular promise.

Although donor dominance has been the guiding principle for hair transplantation surgeons over the past half century, this did not deter dermatologist Hwang et al from challenging the very concept. Hwang et al showed that when hair was transplanted from one part of the body to another, the recipient site can influence such factors as hair growth and survival, hair shaft diameter, and length. His work has profound implications for transplanting hair into a balding
sculpting the scalp from other parts of the body—such as the trunk, legs, and beard—potentially expanding a person’s supply of donor hair.

Going forward, the field of hair transplantation will be shaped by advances in biotechnology that will, in time, enable the cloning of human hair and possibly make a person’s donor supply unlimited. Although it is not clear who will be the first to achieve this elusive goal, important research is currently underway by a number of dermatologist investigators.278-281

This article has surveyed some of the important contributions dermatologists have made to the field of hair restoration surgery over the past 2 decades. Because of space constraints, the contributions of a number of other notable dermatologists have not been mentioned including James Arnold, Marc Avrum, Pierre Bouhanna, Francisco Jimenez, Matt Leavitt, William Parsley, Paul Rose, and Arthur Tykocinski. That this writing is a snippet of contributions, rather than a continuous story, underscores the fact that many of the great strides in hair transplantation are attributable to the hard work of so many physicians who have not been acknowledged in this very brief text.

P. Sclerotherapy and varicose vein therapy

Vascular lesions including varicose veins or telangiectases are common and affect up to 50\% of the adult population. Several studies show that these lesions, even if they are typically not painful, can have a great impact on quality of life.282 Although leg lesions with symptoms such as aching, discomfort, or muscle cramps primarily affect the health-related quality of life, facial lesions such as rosacea or telangiectasia can lead to psychological discomfort.283 This can lead to embarrassment, anxiety, decreased self-esteem, and avoidance of social situations in those affected. Seen from this perspective it becomes apparent that the treatment of vascular lesions has a high medical relevance and is far from just being cosmetically important.

An early development was the use of injectable sclerosants to block or shrink vessels. After first attempts with several agents beginning at the end of the 19th century, the foundation of modern sclerotherapy began in 1916, when the dermatologist Paul Linser284 reported successful treatments using perchloride of mercury with an intravascular technique. Over the years the procedure was improved steadily and became fully accepted by the medical community. Even today, innovations are still evolving, making the procedure safer and more effective for patients and physicians.

An example of the steady evolution of sclerotherapy is the recently FDA-approved sclerosant polidocanol, a mixture of ethers, macrogols, and fatty alcohols, which produces endothelial damage by multiple mechanisms. It shows equal clinical efficacy to sodium tetradecl sulfate, but with less severe complications.285 A pivotal study actually showed a higher treatment success rate and statistical superiority in patient satisfaction of polidocanol over sodium tetradecl sulfate and isotonic saline. The incidence of side effects was generally lower for patients treated with polidocanol than for patients treated with sodium tetradecl sulfate.286

Experimental studies show that polidocanol has a lower probability for tissue necrosis than any other sclerosant.287 Furthermore, because of its anesthetic effect, it does not cause pain.288

Another innovation that enhanced the spectrum of minimally invasive treatment options for varicose veins was the use of endovenous radiofrequency ablation, first described by Weiss and Goldman289 in 1999. Radiofrequency energy is delivered through a special catheter with deployable electrodes at the tip; the electrodes contact the vein walls and deliver energy directly into the tissues, where the radiofrequency is converted into heat and causes irreversible localized tissue damage. The endovenous radio-frequency ablation procedure can be performed entirely under local tumescent anesthesia, with patients resuming normal activities 1 to 2 days postoperatively.

In 2001, only a short time after the introduction of endovenous radiofrequency ablation, another endovenous procedure was introduced by Navarro et al.290 The procedure is based on laser energy delivered endovenously via a fiberoptic laser fiber. The laser energy leads to the formation of steam bubbles at the tip of the laser fibers, which causes thermal damage to the venous endothelium and results in thrombotic occlusion of the vessel lumen. Endovenous laser treatment is a safe and well-tolerated alternative in the management of uncomplicated varicose veins and has subsequently to its introduction undergone a rapid increase in popularity and use with a concomitant decrease in traditional operative saphenectomy.291

The goal of several studies in recent years was to identify the influence of using a foamed sclerosant. A study published by Ouvry et al292 in 2008 showed that with 3\% polidocanol foam complete elimination of reflux was obtained in 85\% of patients after 3 weeks, whereas 3\% liquid polidocanol was effective in only 35\%. There was no difference in the incidence of ecchymosis, inflammatory reactions,
or other side effects. A large multicenter study by Rabe et al. confirmed these results by finding 3% polidocanol foam to be more efficient and equally safe compared with 3% liquid polidocanol for treatment of the greater saphenous vein. After showing the superiority of foam sclerotherapy for many indications, the latest research focuses on the ideal gas for the foaming process. Peterson and Goldman identified room air as being perfectly suited to be used for foam sclerosing, as it has the same efficacy and safety profile as CO₂, but the half-life is 3 times longer and less sclerosant is needed.

Another goal in the recent years has been to identify the relevance of compression after sclerotherapy, a technique that has been used since the 1960s but is still controversial. Although Weiss et al. and Kern et al. found that wearing compression stockings for 3 weeks enhances the efficacy of sclerotherapy of leg telangiectasias, a study by Hamel-Desnos et al. found no difference between compression and control groups when comparing efficacy, side effects, satisfaction scores, symptoms, and quality of life after foam sclerotherapy of the saphenous veins.

The management of both cosmetic telangiectasias and medical indications has been advanced by dermatologists and encompasses a multiple modality approach using sclerosants, radiofrequency, light sources, and minimally invasive techniques. This multimodality approach has changed the scope of management of both cosmetic and medical venous disorders.

IV. REFERENCES
51. Carruthers J, Carruthers A. A prospective, randomized, parallel group study analyzing the effect of BTX-A(Botox) and nonanimal sourced hyaluronic acid (NASHA, Restylane) in combination compared with NASHA (Restylane) alone in severe glabellar rhytides in adult female subjects: treatment of severe glabellar rhytides with a hyaluronic acid derivative compared with the derivative and BTX-A. Dermatol Surg 2003;29:802-9.
70. Narins RS, Dayan SH, Brandt FS, Baldwin EK. Persistence and improvement of nasolabial fold correction with nonanimal-stabilized hyaluronic acid 100,000 gel particles/mL filler on two retreatment schedules: results up to 18 months on two retreatment schedules. Dermatol Surg 2008;34(Suppl):S2-8.

