Bernstein Medical - Center for Hair Restoration - Robotic Hair Transplantation

Robotic Hair Transplantation

About Header Image

Robert M. Bernstein, MD, New York, NY, [email protected]

The goals of most improvements in hair transplant techniques over the past 50 years have been to make donor harvesting less invasive, to increase accuracy for optimized growth, to generate grafts in a size that mimics nature, and to create recipient sites that result in natural hairlines that are aesthetically pleasing, but undetectable as a restoration.

One of the self-limiting factors in hair restoration, particularly follicular unit extraction (FUE), is that it has traditionally been subject to error caused by fatigue and other limitations of the human operator. This is a fundamental reason why the introduction of robotic technology for performing critical aspects of the FUE procedure has been such a game changer. In the hands of an experienced hair surgeon, the ARTAS™ Robotic Hair Transplant System is a powerful tool for creating natural and reproducible outcomes.

With the latest version of the platform, the recently released 9x upgrade, Restoration Robotics™ has engineered a faster and more accurate system for hair restoration. The improved accuracy of harvesting and shortened procedure increase graft viability. The smaller needles reduce scarring for a faster return to normal activity while allowing patients to wear shorter hairstyles.

Brief History of Hair Transplant Techniques

Norman Orentreich is widely credited with introducing the concept of “donor dominance” in the 1950s—the idea that transplanted hair continues to display the same characteristics of the hair from where it was taken. ((Orentreich N: Autografts in alopecias and other selected dermatological conditions. Annals of the New York Academy of Sciences 83:463-479, 1959.)) This means that continued growth at the recipient site is predicated on harvesting viable hairs from the donor site. In other words, the genetics for hair loss reside in the follicle rather than in the skin. However, due to limitations in graft harvesting technology, cosmetic outcomes of early transplant procedures were often unsatisfactory.

The large scars associated with early “hair plug” techniques were largely eliminated by the introduction of mini-grafts in the 1970s. ((Rassman WR, Pomerantz, MA. The art and science of minigrafting. Int J Aesthet Rest Surg 1993;1:27-36.)) This was followed by micro-grafts of 1-2 hairs. Mini-micrografting could be repeated hundreds or even thousands of times to cover large areas of baldness—but early manual techniques for doing so often yielded inconsistent graft quality and still resulted in scarring on the patient’s scalp, albeit less noticeable than previously. ((Rassman WR, Carson S. Micrografting in extensive quantities; The ideal hair restoration procedure. Dermatol Surg 1995; 21:306-311.))

In follicular unit transplantation (FUT), introduced in 1995 by Bernstein and Rassman, individual follicular units were dissected from the donor strip and became the new building blocks of the hair transplant. ((Bernstein RM, Rassman WR, Szaniawski W, Halperin A. Follicular Transplantation. Intl J Aesthetic Restorative Surgery 1995; 3: 119-32.)) Importantly, proper execution of FUT required the use of a stereo-microscope, a technique that was pioneered by Dr. Limmer. ((Limmer BL. Elliptical donor stereoscopically assisted micrografting as an approach to further refinement in hair transplantation. Dermatol Surg 1994; 20:789-793.)) FUT/strip became popular because it produced completely natural results with minimal recipient site scarring and could be used to cover large areas of the scalp.

A limitation of FUT, however, was that patients often needed to wear longer hair styles to cover the linear scar in the donor area. Nevertheless, FUT improved graft viability, consistency, and naturalness compared to mini-micrografting, and it remains in use today as an option for patients who want to maximize hair yield and are not concerned about the linear scar.

In the mid-1990s, Dr. Woods began using a small punch-like instrument to create small, circular incisions in the skin around follicular units, separating them from the surrounding tissue. The follicular units are then pulled, or extracted, from the scalp, leaving tiny holes that heal in a few days. Dr. Woods was reluctant to share his techniques with the medical community; in 2002 Drs. Rassman and Bernstein, working with Columbia University, developed their own technique and published it in Dermatologic Surgery. The procedure then spread rapidly, and now over half of all hair transplant procedures performed today worldwide utilize FUE techniques. ((Rassman WR, Bernstein RM, McClellan R, Jones R, et al. Follicular Unit Extraction: Minimally invasive surgery for hair transplantation. Dermatol Surg 2002; 28(8): 720-7.))

A major advance to the FUE technique came with the two-step process devised by Dr. Harris. In his technique, a sharp punch was first used to score the surface of the skin and then a dull punch was used to dissect deeper into the tissue to avoid transection of follicles. This two-step technique was to become the basis for the future mechanism of robotic FUE. ((Harris JA. The SAFE System: New Instrumentation and Methodology to Improve Follicular Unit Extraction (FUE). Hair Transplant Forum Intl. 2004; 14(5): 157, 163-4.))

FUE procedures allow recipients to wear shorter hairstyles due to the absence of a linear scar in the donor area, and they can typically return to physical activity sooner than after FUT. Yet, inherent difficulties in performing FUE, namely the requirement of keeping the follicular extraction instrument parallel and oriented along the axis of the follicle through the length of the graft, make it a technically challenging procedure. The introduction of the ARTAS Robotic Hair Transplant System in 2011 changed that dynamic by offering precision, control, and repeatability in follicle harvesting. Because it manages the exacting and repetitive work of extracting hundreds to thousands of grafts in a single session, physician fatigue and error are minimized. The potential to transect or damage the hair is reduced, and graft viability is increased.

Generational Improvements in Robotic Hair Transplantation

The first iteration of the ARTAS robot helped deliver accuracy and reproducibility in the form of a physician-assisted, computerized device with a three-dimensional optical system to locate and harvest follicular units directly from the donor area. By 2013, robotic recipient site making was added to help make the sites more uniform in depth and distribution and to avoid existing, healthy hair. Upon the recommendation of Dr. Bernstein, the manufacturer added another important upgrade in 2016 with a graft selection algorithm to select follicular units for harvesting based on the number of hairs they contain, producing greater hair density while leaving fewer scars in the donor area. ((Bernstein RM, Wolfeld MB. Robotic follicular unit graft selection. Dermatologic Surgery 2016; 42(6): 710-14.))

Restoration Robotics recently released the 9x ARTAS Robotic Hair Transplant System, the latest generation of its platform. It is faster and more accurate than previous versions and has better functionality. It also has improved artificial intelligence (AI) that reduces the potential for over-harvesting and enhances capabilities in recipient site making.

The easiest feature to appreciate with the 9x is that its raw speed is approximately 20% faster than the 8x. This is achieved by faster alignment with follicles, without sacrificing any precision in the approach angle for harvesting. The 9x features a dissection cycle of less than 2 seconds, meaning it can safely harvest roughly 1,300 grafts per hour—while still analyzing the scalp in micron-level precision. As with previous ARTAS versions, the cutting action is a two-step process, with an inner needle engaging the hair while the blunt outer punch separates the follicular unit from the remaining tissue.

Faster overall dissection is achieved with the 9x because the robot moves from one to the next follicle unit by skimming over the surface of the scalp, rather than retracting away from it between harvests.

The increased precision of the ARTAS 9x allows for the use of smaller needles for harvesting in appropriate candidates. The initial ARTAS system could only be used with a needle/punch apparatus that cut 1.0mm on the surface. The next iteration used a needle and punch of 0.9mm at the surface. The 9x has a 0.8mm option to allow very short hairstyles, although care should be taken in patient selection as there is less tolerance with a smaller punch.

The optics of the 9x have been completely reconfigured to use white LED illumination versus red, which allows extraction while harvesting without eye fatigue. The 9x is also easier to operate with some key features: a 1” extension on the robotic arm for longer reach and less need to reposition the patient; a smaller robotic head to permit acute angles of approach for harvesting; additional site making options, such as the ability to change the orientation (i.e., from sagittal to coronal) in different zones on the scalp; and a harvesting halo that is faster to apply and more comfortable for the patient.

AI and the Future of Hair Restoration

One of the more impressive aspects of working with the ARTAS System in hair restoration procedures is its already powerful AI. This feature makes it possible to detect select follicle units for harvesting. It also gives the platform the capability to automatically adjust the angle of approach, thereby reducing the potential to transect the hair follicle during harvesting.

One of the major upgrades in the 9x is the addition of an “empty site warning” that signals the operator that the harvest is not precise, allowing for adjustments in real-time. This builds on the already intuitive and user-responsive interface to add further quality control. Automatic scar detection has also been added so that the robot will skip over low-density areas to have more uniform harvesting. This is particularly important to our practice where we specialize in repair and corrective procedures.

The ARTAS platform is integrated with ARTAS Hair Studio™, an app-based technology with which the surgeon can consult with the candidate to simulate the final outcome. The ARTAS Hair Studio is also used by the physician to design the pattern for recipient site creation. With the 9x, Hair Studio has been upgraded so that instead of stitching together multiple photos to create a three-dimensional representation of patient’s scalp, it does so in a single photograph, making it faster and more efficient.

What is fundamental to understand about the 9x upgrade is that many of the additions have been specifically engineered based on user feedback, my own included. Restoration Robotics continues to work closely with physician users to understand needs in the clinic to produce a platform for hair restoration that is responsive to needs of the end user and the end beneficiary (the patient). In my hands, the 9x takes and makes an already powerful tool for hair restoration even faster and more accurate.

The statements, views, opinions, and analysis concerning Restoration Robotics and its technology expressed in this article are solely mine and are not intended to reflect the statements, view, opinions, and analysis of Restoration Robotics.

Posted by

Q: I thought that FUE extraction is performed in a way that it cannot be detected. Therefore, it is best to distribute the pattern evenly starting from the safe zone and fading out on the sides. The ARTAS results often show a smaller extraction area and harder edges (no transition from extraction to non-extraction area). Does this lead to a higher risk to detect the surgery? — H.K. ~ Chicago, I.L.

A: Feathering of the extraction zone in FUE is a technique where the distance between the extractions gradually increases as one reaches the border of the extracted zone. When this technique should be used depends upon the short- and long-term goals of the patient. If the patient’s main goal of the FUE procedure is to wear their hair very short, then the technique of feathering and rounding the edges to have a less distinct border is appropriate, as this will decrease the visibility of the harvested area.

However, if a person does not wear his hair very short (nor plans to) and maximizing the donor supply is paramount, then a more organized pattern, with less feathering, will give a greater long-term yield and a more even distribution. The reason is that the healing of FUE wounds distorts adjacent follicular units making subsequent extraction in the same regions more difficult and increases the risk of transection. For this reason, in subsequent procedures we generally prefer to harvest in new areas. If we need to harvest more hair from the same area, we rarely go back more than once.

When one feathers extensively in the donor area, this utilizes a larger surface area of the scalp with less graft yield, so it may become necessary to go back over the same area to obtain additional grafts, often multiple times. This risks increased transection and an uneven, mottled appearance to the donor area.

If a person wears his hair very short, then feathering is critical (even though it makes subsequent extraction more problematic). It is very easy to feather and round edges with the ARTAS robot, but we make the decision to do so based upon the specific needs and goals of the patient.

Posted by

Q: As a medical advisor and an end-user of the ARTAS Robotic System, do you see any impact of your involvement with Restoration Robotics? — J.V. ~ Miami, F.L.

A: Restoration Robotics has been very responsive to the needs of its physicians and to their patients. Because I work closely with Restoration Roboticsin the development of new improvement and advances they are often introduced first in our practice.

Posted by
Dr. Ordon and Dr. Bernstein discussing the latest advances in the ARTAS® Robotic Hair Transplant SystemDr. Ordon and Dr. Bernstein discussing the latest advances in the ARTAS® Robotic Hair Transplant System

Dr. Andrew Ordon — Emmy-nominated co-host of the award-winning talk show “The Doctors” — and Dr. Robert Bernstein met at Bernstein Medical – Center for Hair Restoration in New York City on March 3, 2016, to discuss the latest advances in robotic hair transplantation.

Some of the topics they discussed include the advanced LED touchscreen interface (illustrated above), a new automated graft selection capability, and the robot’s upgraded image-guidance system, which enables more precise harvesting and a further reduction of graft transection.

Dr. Bernstein appeared on “The Doctors” in 2012. On that program, he discussed how the precision technology of the ARTAS Robotic Hair Transplant System enables doctors to extract thousands of follicular units without human error entering the equation.

Video: Dr. Bernstein on “The Doctors”

Posted by

Q: How are specifications for making recipient sites inputted into the ARTAS® robot? — A.F., Queens, NY

A: At the outset of the procedure, the physician sits at a computer terminal that is connected to the ARTAS Robot and enters the specifications directly into the robot’s software. Variables programmed in this manner include the number of recipient sites, density of sites, angle that the hair will extrude from the skin, depth of recipient sites, and the minimum distance away from existing hair follicles that a site can be created.

Posted by

Dr. Robert M. Bernstein, pioneer of modern hair transplant procedures and a Clinical Professor of Dermatology at Columbia University in New York, was included in New York Magazine’s ‘Best Doctors’ issue for the 16th consecutive year.

Best Doctors 2015 - New York Magazine

New York, NY — Robert M. Bernstein, MD, MBA, FAAD, a Clinical Professor of Dermatology at Columbia University in New York and renowned pioneer of Follicular Unit Transplantation (FUT) and Robotic Follicular Unit Extraction (Robotic FUE) hair transplant procedures, was included in New York Magazine’s annual ‘Best Doctors’ issue for the sixteenth consecutive year.

On being chosen for his sixteenth consecutive ‘Best Doctors’ issue, Dr. Bernstein said: “I am honored to be considered among the best doctors in New York and it is a credit to the hardworking staff at Bernstein Medical that, after two decades of incredible progress, we are still making significant advances in the surgical treatment of hair loss.”

Recognition of Dr. Bernstein and his contributions to the field of surgical hair restoration comes as he continues to push the envelope with advances in Robotic FUE hair transplants, improving more traditional hair restoration techniques and exploring adjuvant treatments.

Among the improvements Dr. Bernstein has made to the robotic hair transplant procedure include: automated selection of follicular unit grafts, robotic creation of recipient sites, reducing wound size, and a “long-hair” FUE technique that allows a patient to have an FUE hair transplant without the donor area being visible in the post-op period. Collectively these improvements make the robot more efficient, reduce scarring from the procedure, and improve the outcome for patients. Dr. Bernstein’s internationally renowned hair restoration facility, Bernstein Medical – Center for Hair Restoration, is a beta-testing site for Restoration Robotics, Inc., the company that produces the ARTAS® robot. Dr. Bernstein is a medical advisor to the company.

New York Magazine’s ‘Best Doctors’ issue is a special annual edition of the acclaimed magazine which contains a directory of the New York City area’s best physicians. The directory is created by Castle Connolly, Ltd., through a survey of doctors in the New York Tri-State area. To be included, doctors in New York, New Jersey and Connecticut are nominated by their peers and then must pass a rigorous physician-led review of their qualifications, reputation, and skill in diagnosis and treating patients. Castle Connolly also publishes America’s Top Doctors, which has included Dr. Bernstein in all fourteen editions.

About Robert M. Bernstein, M.D., F.A.A.D.

Dr. Robert M. Bernstein is a Clinical Professor of Dermatology at Columbia University in New York, founder and lead surgeon at Bernstein Medical – Center for Hair Restoration, and renowned pioneer of Follicular Unit Transplantation (FUT) and Robotic Follicular Unit Extraction (Robotic FUE) hair transplant procedures. Dr. Bernstein was the first to describe Follicular Unit Transplantation and Follicular Unit Extraction in the medical literature, and his more than 60 medical publications have fundamentally transformed surgical hair restoration. Dr. Bernstein has received the Platinum Follicle Award, the highest honor in the field given by the International Society of Hair Restoration Surgery (ISHRS), and has appeared as a hair restoration expert on many notable television programs and news and lifestyle publications over the years. Examples include: The Oprah Winfrey Show, The Dr. Oz Show, The Today Show, Good Morning America, ABC News, CBS News, New York Times, Wall Street Journal, Men’s Health Magazine, and more. He is co-author of Hair Loss & Replacement for Dummies. Dr. Bernstein graduated with honors from Tulane University, received the degree of Doctor of Medicine at the University of Medicine and Dentistry of NJ, and did his training in Dermatology at the Albert Einstein College of Medicine. Dr. Bernstein also holds an M.B.A. from Columbia University.

About Bernstein Medical – Center for Hair Restoration

Bernstein Medical – Center for Hair Restoration, founded by Dr. Bernstein in 2005, is dedicated to the diagnosis and treatment of hair loss in men and women using the most advanced technologies. The state-of-the-art facility is located in midtown Manhattan, New York City and treats patients who visit from 58 countries and all 50 states. The board-certified physicians and highly-trained clinical assistants at Bernstein Medical take pride in providing the highest level of treatment and care for all patients. In 2011, Bernstein Medical became one of the first practices in the world to offer Robotic FUE hair transplant procedures using the image-guided, computer-driven technology of the ARTAS Robotic System. Bernstein Medical is a beta-testing site for this technology.

Posted by

Q: Why is using the robot to create recipient sites useful in a hair transplant? — S.K., Jersey City, NJ

A: The ARTAS® Robotic Hair Transplant system eliminates the inconsistencies inherent in creating large numbers of recipient sites by hand. The robot can create sites at a rate of up to 2,000 per hour. Although there is more set-up time compared to sites made manually, once the physician specifies the parameters such as punch depth, punch angle, and site direction, recipient site creation is precise and rapid.

One of the benefits of robotic site creation is that the distribution of grafts over a fixed area of the scalp can be exact. For example, if one wants to transplant 1,000 grafts evenly over 50cm2 of area, this can be done with great precision and with uniform site spacing. In addition, the physician can vary the densities in select regions of the scalp and the robot will adjust the densities in other areas so that the total number of sites remains the same.

Another benefit of the new technology is that the robot can be programmed to avoid existing hair and select which specific hair diameters to avoid. The robot is programmed to keep a specified distance from the existing hair to ensure that the resident follicles will not be damaged and that the distribution of new hair is even and natural. This computerized mechanism appears to be more accurate than what can be done by hand and, importantly, does not sacrifice speed in the process.

Posted by
Restoration Robotics

Restoration Robotics, the company that developed the ARTAS® Robotic Hair Transplant system, has published a white paper case study on how Dr. Bernstein utilizes the robotic system’s tools to minimize scarring after Robotic FUE.

The paper describes how a Bernstein Medical patient — a 45 year old man with Norwood Class 5A male pattern baldness — had 2,540 follicular units harvested with the ARTAS robot, generating a total of 2,768 grafts. Some of the tools and techniques that Dr. Bernstein employed include:

  • Small 19g dissecting needle — the small needle leaves a smaller wound that heals more rapidly than previous needles.
  • Software programmed to avoid 1-hair follicular units — the extraction of follicular units with more than one hair maximizes the number of hair follicles per graft and reduces the number of donor wounds that need to be made.
  • Minimum distance between harvest sites — by increasing the distance between harvested follicular units (from 1.7mm to 2.0mm), Dr. Bernstein enabled “feathering” between harvested and non-harvested zones. This blending of harvest zones into non-harvested zones makes the harvested area less noticeable.

In the third month after his Robotic FUE hair transplant surgery, the patient’s donor area was reviewed for scarring with hair shaved at four different lengths.

See images of the patient’s donor area below:

Before Robotic Hair Transplant
Before Robotic Hair Transplant
Day 2 Following ARTAS Procedure
Day 2 Following ARTAS Procedure
3mo Post-op: Shaved with #2 Clipper
3mo Post-op: Shaved with #2 Clipper
3mo Post-op: Shaved with #1 Clipper
3mo Post-op: Shaved with #1 Clipper
3mo Post-op: Shaved with Peanut Clippers
3mo Post-op: Shaved with Peanut Clippers
3mo Post-op: Shaved with Peanut Clippers (Close Up)
3mo Post-op: Shaved with Peanut Clippers (Close Up)
3mo Post-op: Shaved to the Skin
3mo Post-op: Shaved to the Skin
3mo Post-op: Shaved to the Skin (Close Up)
3mo Post-op: Shaved to the Skin (Close Up)

The case study illustrated that the ARTAS Robotic Hair Transplant system’s suite of tools can minimize the detectability of scars after an FUE hair transplant.

Dr. Bernstein describes advanced Robotic FUE techniques used at Bernstein Medical (VIDEO)
Read about Robotic Hair Transplantation

Posted by

Q: How many follicles can you transplant with robotic FUE compared to manual FUE? — R.V., Upper West Side, N.Y.

A: We can extract the same number of follicles robotically as we can manually.

That said, the goal of any hair transplant procedure is not to transplant as many hair follicles as possible but rather to achieve the best possible cosmetic result given your degree of hair loss and the number of hair follicles available in your donor area.

While there is no difference between robotic and manual FUE in terms of the number of follicles that each procedure can extract, robotic FUE does have the following advantages over manual FUE:

  • During the follicular unit extraction (or harvesting) phase of a hair transplant, there is less chance of damaging follicular units using a robot vs. a hand held device (e.g., Neograft), because the robot is more accurate. This means more grafts survive after transplant.
  • Robotic graft harvesting times are shorter than manual, e.g., while on average if a physician could manually extract 200-300 grafts per hour, the same physician could robotically extract up to 500-1000 grafts per hour ((Chang, H.H. Robotics, artificial intelligence, and the future of hair transplantation. Prime Dermatology, July/August 2014.)). This means a shorter procedure time for the patient.

Read more about the advantages of Robotic FUE.

Posted by

Dr. Robert M. Bernstein presented the ARTAS Hair Studio™ digital hair transplant design software and robotic recipient site creation using the ARTAS® Robotic Hair Transplant system, each advances in key aspects of hair transplantation, at the International Society of Hair Restoration Surgeons (ISHRS) annual meeting in Kuala Lumpur, Malaysia on Saturday, October 11th, 2014.

Kuala Lumpur, Malaysia (PRWEB) October 31, 2014 — Robert M. Bernstein, M.D., F.A.A.D., a world-renowned hair transplant pioneer, has presented two advances in robotic hair transplant surgery to the hair restoration industry’s largest conference; an interactive hair restoration design software suite called ARTAS Hair Studio™ and recipient site creation capability in the ground-breaking ARTAS® Robotic Hair Transplant system. Dr. Bernstein’s presentation highlights the fact that the ARTAS System is the first system to integrate the planning and performance of a hair transplant procedure. Dr. Bernstein presented these new technologies at the 22nd Annual Science Meeting of the International Society of Hair Restoration Surgeons (ISHRS) in Kuala Lumpur, Malaysia, on October 11th, 2014.

ISHRS 2014 - 22nd Annual Scientific Meeting - Kuala Lumpur, Malaysia
ISHRS 2014 – 22nd Annual Scientific Meeting in Kuala Lumpur, Malaysia

ARTAS Hair Studio is a planning tool that assists the physician in the design phase of the hair restoration procedure. Dr. Bernstein’s presentation described how this software enables the physician to generate a three-dimensional model of the patient’s head and then create a treatment plan based on parameters such as the number of recipient sites, the angle of elevation of the hairs, and the direction of the hairs. With small modifications of the software, the technology can add “virtual” hair to the 3-D model and allow patients to see how the results will actually look. This will create a more interactive, educational experience for the patient and one that helps align the patient’s expectations with what is possible given their specific hair loss characteristics.

Dr. Bernstein showed how, using the new software, the surgeon can divide the treatment area into two or more sections and then program different recipient site densities for the different areas to closely mimic how hair grows in nature. The treatment plan created using ARTAS Hair Studio can be saved and then imported into the ARTAS hair transplant robot.

Once the design specifications have been imported, the ARTAS Robot can then create the recipient sites, the tiny incisions made in a patient’s scalp, into which transplanted grafts of naturally-occurring groups of 1-4 hairs, called follicular units, are placed.

Recipient Site Creation at Bernstein Medical Using ARTAS Robotic System
Recipient Site Creation at Bernstein Medical Using ARTAS Robotic System

In his presentation to the ISHRS, Dr. Bernstein described several advantages of robotic site creation over manual site creation, including: the elimination of inconsistencies in creating large numbers of recipient sites by hand, precise distribution of follicular unit grafts, automatic adjustment to site densities, and automatic avoidance of existing hairs without sacrificing speed. The robot uses advanced sensory equipment and optical cues to locate potential recipient sites on the scalp and then quickly and accurately make the incisions based on the pre-programmed parameters. The robot can create up to 2,000 recipient sites in approximately one hour.

Dr. Bernstein noted that these advances represent an integration of the design and planning processes with the actual performance of the procedure. Whereas in the past, the doctor would describe the treatment plan to the patient and then manually implement the prescribed plan, today’s computerized robotic system allows the physician to digitally design the hair transplant treatment plan, and then that plan directs the robot in the operating room.

Restoration Robotics Inc., the company that developed the robot, collaborated with Dr. Bernstein, using the Bernstein Medical – Center for Hair Restoration facility as a beta-testing site, to upgrade the ARTAS robot and test these and other advances. The ultimate goal is to deliver a robot that will mechanize every surgical aspect of an FUE hair transplant procedure.

About Robert M. Bernstein, MD, MBA, FAAD

Dr. Bernstein’s published articles on follicular unit hair transplant procedures have been called “Bibles” for the industry. He has received the Platinum Follicle Award, the highest honor in the field. He is a fellow of the International Society of Hair Restoration Surgery (ISHRS). Dr. Bernstein has appeared as a hair restoration expert on many notable television programs and in many news and lifestyle publications over the years. Examples include: The Oprah Winfrey Show, The Dr. Oz Show, The Today Show, Good Morning America, ABC News, CBS News, New York Times, Wall Street Journal, Men’s Health Magazine, and more. He is co-author of Hair Loss & Replacement for Dummies. Dr. Bernstein graduated with honors from Tulane University, received the degree of Doctor of Medicine at the University of Medicine and Dentistry of NJ, and completed his training in Dermatology at the Albert Einstein College of Medicine. Dr. Bernstein is a Clinical Professor of Dermatology at Columbia University.

About Bernstein Medical – Center for Hair Restoration

Bernstein Medical – Center for Hair Restoration, the facility Dr. Bernstein founded in 2005, is dedicated to the diagnosis and treatment of hair loss in men and women using the most advanced technologies. The state-of-the-art facility is located in midtown Manhattan, New York City and treats patients from around the globe. In 2011, Bernstein Medical became one of the first practices in the world to offer Robotic FUE procedures using the image-guided, computer-driven technology of the ARTAS Robotic System. Bernstein Medical is a beta-testing site of the robot’s new capability including the creation of recipient sites and Dr. Bernstein is a medical advisor to the company that produces the robotic system, Restoration Robotics, Inc. The board-certified physicians and highly-trained clinical assistants at Bernstein Medical take pride in providing the highest level of treatment and care for all patients.

Posted by

ARTAS® Robotic Hair Transplant System

Restoration Robotics, Inc. has announced that the ARTAS® Robotic System has harvested its 10 Millionth Hair, a major accomplishment for the three-year-old robot. The company attributes the success of achieving the 10 Millionth Hair in this short time span to rapid adoption by hair transplant industry leaders, like hair restoration pioneer Dr. Robert Bernstein.

The ARTAS robot is the only image-guided, physician-assisted robotic system for harvesting follicular units.

On the achievement, Jim McCollum, President and Chief Executive Officer of Restoration Robotics, said:

“The ARTAS Robotic System is fast becoming the gold standard in hair transplantation and enables hair restoration surgeons to enhance the patient experience and achieve unsurpassed outcomes. Our 10 Millionth Hair verifies the increased interest in patients pursuing a highly precise, undetectable hair transplant with a high degree of patient satisfaction. Interested patients are researching and demanding the ARTAS Robotic Hair Transplant Procedure.”

The ARTAS Robotic System received 510k clearance from the Food and Drug Administration (FDA) in 2011 after a decade of research, testing, and clinical trials. Dr. Bernstein is an advisor to the company and, since its launch in 2011, he has offered several modifications to the initial iteration of the robot that have improved its performance and usability. Bernstein Medical – Center for Hair Restoration was the first facility on the East Coast of the United States, and one of the first hair transplant practices in the world, to use the system. Bernstein Medical is also a beta-testing site for the robot, and many upgrades to the hardware and software of the unit have been tested and perfected in our Manhattan hair restoration facility. All FUE hair transplants at Bernstein Medical are performed with the aid of the ARTAS robot.

Posted by

Q: I have read a bit about the ARTAS robot and how it uses an “image-guided” system, but what does that mean? And how is the robot’s imaging system different than a human surgeon viewing the grafts with the naked eye? — S.V., Middle Village, N.Y.

A: That is a great question and it gets to one of the key benefits of the robotic hair transplant system: its accuracy. When a surgeon is performing FUE using manual techniques, they must wear a headset that magnifies the scalp so they can see the follicular units more clearly than with the naked eye. The surgeon must visually and mentally process subtle nuances of the skin and follicular units for every one of the hundreds or thousands of units that are extracted. The ARTAS robot magnifies the surface of the skin in much the same way, but to a much greater extent. In addition, it is not subject to the limitations of the human eye, or human hand, and it is not subject to human error. The surgeon may not have exact hand-eye coordination. The surgeon may be concentrating on one aspect of the extraction, say following the angle of the hair, but might ignore another important aspect of the follicle, say its depth in the skin or its orientation. And, of course, the surgeon tires, both physically and mentally, from performing the hundreds or thousands of repetitive motions.

The robot’s image-guided system, on the other hand, does not experience these limitations. The robot magnifies the skin, detects each follicular unit and the nuances of the skin/hair characteristics, and then extracts that follicular unit with precision. When the imaging system detects changes to the skin, this new information is fed into the computer in real-time and the system adjusts automatically based on this feedback as it continues to harvest grafts. There is no distracting the robot, and the robot will not forget, or ignore, key variables in the extraction. The robot can extract thousands of follicular units without tiring from repetition or slowing down the extraction.

Based on my own practical experience using the robot, it is clear that the robot’s ability to estimate the position of the follicles under the skin and to extract it with precision is superior to manual techniques. Having used the ARTAS system for over three years, and having helped make improvements to the device since the first iteration, I have seen robotic technology substantially improve the outcome for my patients.

Video Display of the ARTAS Robot Image-Guided System




Display: ARTAS Robot Image-Guided System

Posted by

Dr. Bernstein was interviewed by Spencer Kobren on The Bald Truth, the critically acclaimed broadcast on hair loss and hair restoration. They discussed the latest in robotic hair transplant surgery, the ARTAS® Robotic System, FUE and FUT hair transplant procedures, and the future of hair restoration.

Spencer Kobren: It’s great to have you back. And I know you only have about a half an hour – actually about 20 minutes now… Let’s get straight to the point. You heard my opening, you kind of know how I feel about the way that the industry is moving, the direction the industry is moving in, and also my concern about now that these devices are really starting to become a bigger part of the market, I believe that these devices are getting into the wrong hands. Now let’s just start with why you’ve embraced it and then we can go into how the industry is evolving.

Dr. Bernstein: Follicular Unit Transplantation via strip was a pretty straight-forward procedure, and once we figured out how to use microscopes to dissect out the follicular units and train the staff on microscopic dissection, it was pretty much a slam dunk. It was just a question of other doctors embracing it and patients understanding what it is and demanding the procedure. With Follicular Unit Extraction it’s really a much different animal. The technique is very, very tricky. And the reason why it’s tricky is because the dissection is done essentially blind. The hair follicle changes direction as it goes deeper in the skin, and also the hairs that comprise a follicular unit splay outward — they fan outwards — so it’s very tricky to get a very small punch around an intact follicular unit. When you do this by hand thousands of times, it’s really, really hard for a physician to concentrate and be consistent and not get bored out of his mind. Also, you don’t have all the visual cues that you have under a microscope. So this repetitive procedure lends itself to robotics. For years we worked on the technique, first with a sharp punch, then a dull punch, then a two-step technique where we used a sharp punch to score the skin and then a deeper [duller] punch under it. Each got better and better, but it never was really consistent, and it certainly was very, very dependent on the user, the patient, and how you’re feeling that day. So this procedure lends itself to robotics. I first learned about the robotic procedure very early in 2011 and when I first saw the robot it made total sense to me.

The Bald Truth is America’s longest running self help radio show for men’s hair loss. Kobren is the Founder and President of the American Hair Loss Association and a founder of the International Alliance of Hair Restoration Surgeons (IAHRS).

Posted by

Dr. Robert M. Bernstein has been included in New York Magazine’s annual ‘Best Doctors’ issue for the 15th consecutive year. Dr. Bernstein, a Clinical Professor of Dermatology at Columbia University, is a world-renowned hair transplant surgeon and pioneer of robotic hair transplant procedures.

Best Doctors 2014 - New York Magazine
New York Magazine ‘Best Doctors’ 2014

New York, NY — Robert M. Bernstein, MD, MBA, FAAD, a Clinical Professor of Dermatology at Columbia University in New York and a pioneer of modern hair transplant procedures, is honored to be included in New York Magazine’s annual ‘Best Doctors’ issue for the fifteenth consecutive year.

Dr. Bernstein’s two decades of innovation in surgical hair restoration and dedication to his patients at Bernstein Medical – Center for Hair Restoration have earned him placement in the 2014 edition of the peer-nominated ‘Best Doctors’ issue. The respect his colleagues have for his work stems from his leadership and dedication to advancing and improving surgical hair restoration procedures.

When asked about being included in his fifteenth consecutive issue of ‘Best Doctors,’ Dr. Bernstein said:

“As a physician, my singular focus is on providing patients with the best options for hair restoration and performing transplant surgery using the most advanced technologies. That my work is recognized by the medical community is both an honor and a testament to how far the field of hair transplantation has come since the days of the older, less-natural procedures.”

Dr. Bernstein’s latest work is in developing new applications for robotic hair transplant procedures. In addition to being among the first in the world to incorporate the ARTAS® robotic system into his practice, Dr. Bernstein was the first to describe Follicular Unit Transplantation (FUT) and Follicular Unit Extraction (FUE) into the catalog of medical literature. He has authored over 60 publications in scientific journals. These writings have fundamentally transformed the hair transplant procedure from older “plug procedures,” into a modern technique that uses precise robotic technology to extract individual follicular units from the back of the scalp. A recent historical review of dermatologic surgery published in the Journal of the American Academy of Dermatology recognized Dr. Bernstein’s work in FUT and FUE as allowing “the once elusive goal of a completely natural-looking hair transplant to finally be achieved.”

New York Magazine’s ‘Best Doctors’ issue is a special annual edition of the acclaimed magazine which contains a directory of the New York area’s best physicians selected by Castle Connolly, Ltd. Physicians throughout New York, New Jersey and Connecticut are nominated by their peers as part of their survey and must also pass a rigorous physician-led review of the doctor’s qualifications, reputation, skill in diagnosis and treating patients.

About Robert M. Bernstein, M.D., F.A.A.D.

Dr. Robert M. Bernstein’s published articles on Follicular Unit Transplantation have been called “Bibles” on that methodology. He has received the Platinum Follicle Award, the highest honor in the field, and has been named the Surgeon of the Month and Pioneer of the Month by the International Society of Hair Restoration Surgery (ISHRS). Dr. Bernstein has appeared as a hair restoration expert on many notable television programs and in many news and lifestyle publications over the years. Examples include: The Oprah Winfrey Show, The Dr. Oz Show, The Today Show, Good Morning America, ABC News, CBS News, New York Times, Wall Street Journal, Men’s Health Magazine, and more. He is also co-author of Hair Loss & Replacement for Dummies. Dr. Bernstein graduated with honors from Tulane University, received the degree of Doctor of Medicine at the University of Medicine and Dentistry of NJ, and did his training in Dermatology at the Albert Einstein College of Medicine. Dr. Bernstein also holds an M.B.A. from Columbia University.

About Bernstein Medical – Center for Hair Restoration

Bernstein Medical – Center for Hair Restoration, the facility Dr. Bernstein founded in 2005, is dedicated to the diagnosis and treatment of hair loss in men and women using the most advanced technologies. The state-of-the-art facility is located in midtown Manhattan, New York City and treats patients from around the world. In 2011, Bernstein Medical became one of the first practices in the world to offer Robotic FUE procedures using the image-guided, computer-driven technology of the ARTAS Robotic System. Bernstein Medical is a beta-testing site of the robot’s new capability including the creation of hair transplant recipient sites. The board-certified physicians and highly-trained clinical assistants at Bernstein Medical take pride in providing the highest level of treatment and care for all patients.

Posted by

Q: Why does the ARTAS® Robotic System only do FUE, not FUT? — V.Z., Chicago, Illinois

A: Currently the robot is only used for harvesting grafts from the donor area. In FUE, the doctor punches out hundreds to thousands of individual follicular units from the back and sides of the scalp by hand using a small round instrument called a punch. The punch has to be held at exactly the right angle, with just the right pressure applied, stopped at a precise depth and, during this time, rotated (or spun mechanically) without changing the alignment.

As one can imagine, this exhaustingly tedious process can best be done using the precision of a robotic device.

In FUT, the harvesting is done by a surgeon using a scalpel to make a long incision in the back of the scalp. It only takes a few minutes. The harvested strip is removed and then placed under dissecting microscopes where the individual follicular units are isolated. This dissection, thus far, can only be done by hand. There is no robotic technology available to do this.

Harvesting the donor hair, of course, is only one part of a hair transplant. The other steps, recipient site creation (making the holes that the grafts are placed into) and actually placing the grafts into those sites are similar in both FUE and FUT.

It is anticipated that robotic site creation will be available in the fall of 2014 and robotic graft placement, the third and final step, about two years after that. At that time, the robot will be able to perform the entire FUE procedure and the last two parts of the FUT procedure.

Of course, the robot doesn’t do the surgery alone. The physician must input all the information regarding the design and planning of the procedure and closely monitor each step of the robotic process. Unlike automating industrial production, the human scalp has great variability, so there is no one formula that will be appropriate for every patient. Physician skill and involvement is just as important in robotic hair transplantation as it is with every other type of surgical hair restoration procedure.

Posted by

Columbia BusinessDr. Bernstein is featured in Columbia Business, the alumni magazine of the Columbia Business School, for having “revolutionized the field of hair restoration.” Dr. Bernstein, who received an MBA from the renowned university in 2004, is quoted as having seen an opportunity in 1995 to transform hair transplantation from a procedure using “hair plugs” to one with significantly more natural results. In collaboration with Dr. William Rassman he introduced Follicular Unit Transplantation (FUT) which, the article notes, is now the “gold standard” for modern surgical hair restoration.

Also mentioned in the article, which is titled “Hair Hero,” are his pioneering work in robotic hair transplant procedures, his receiving the Platinum Follicle Award, and his appearances in the popular media including a feature on Good Morning America.

Dr. Bernstein is a Clinical Professor of Dermatology at the College of Physicians & Surgeons of Columbia University, where he instructs residents in general dermatology and the specialized art of hair restoration surgery.

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top