Bernstein Medical - Center for Hair Restoration - Genetic Hair Loss

Genetic Hair Loss

About Header Image

Q: What’s your honest take on Nutrafol? It is a product my dermatologist has recommended for my hair loss. — N.S. ~ New York, N.Y.

A: The traditional thinking is that that male pattern alopecia (androgenetic alopecia) is due to follicular sensitivity to DHT causing miniaturization and eventual loss of hair. The premise of Nutrafol is that hair loss is multi-factorial with an important inflammatory component and that it is important to address the inflammation as well as the DHT sensitivity.

This is a relatively new and important concept (I would like to stress this point!). However, the big leap is their conclusion: Since hair loss is multi-factorial, then broad, rather than targeted treatments would be most beneficial, and since naturally occurring “phytochemicals” are broader in action than targeted, FDA approved drugs (like and minoxidil), they should offer benefit in the treatment of hair loss and Nutrafol is the elixir that can accomplish this.

Although this makes sense in concept, there is no scientific evidence that Nutrafol can actually reverse or/mitigate androgenetic alopecia or any other type of hair loss. We need independent, blinded, controlled studies to show that Nutrafol actually works. Until then, it is very difficult to recommend this product and, more importantly, to recommend it over other treatments known to be effective.

Posted by

What are the chances that I will go bald? How bald will I be? Can I know for sure? These are among the most common questions we get from patients in our hair loss consultations. Despite extensive knowledge about the mechanisms and causes of androgenetic alopecia (common baldness), the answers to these questions have been a bit hazy. New research has sharpened the focus on the genetic mix that results in hair loss and has enabled more accurate predictions. A study published in February 2017 in the journal PLoS Genetics identified over 250 gene locations newly linked to hair loss. Using this information, researchers more accurately predicted severe balding compared to previous methods.

Background

We know that susceptibility to hair loss is driven by genetics. One in two men in their 50s experience some degree of balding, with that proportion increasing to over 60% of men aged 60 and over. We also know that one of the most important genes in hair loss, called the androgen receptor (AR) gene, is located on the X chromosome. Outside of that, knowledge of the precise genetic makeup resulting in baldness is sparse and there is wide variation in balding patterns. Some genetic tests, such as the HairDx test, have been developed to predict a patient’s risk of balding, but lack the ability to determine its severity. To date, the best method for predicting the extent of future hair loss is to have an experienced physician take a personal and family history and perform a physical examination that includes an assessment of miniaturization of scalp hair.

Developing a more thorough understanding of the complex genetic relationships that result in hair loss will be important in clinical practice as these relationships may help predict future hair loss and guide methods of treatment.

The Study

Researchers selected a pool of more than 52,000 men with male pattern baldness from UK Biobank. This is a massive database of over half a million people aged 40-69 years with information accumulated from 2006 to 2010. This pool was over four times the size of the previously largest hair loss study. Researchers applied a genome-wide association study (GWAS) to a cohort of about 40,000 men and identified 287 statistically important gene locations (loci) linked to varying degrees of baldness — more than 35 times the eight genetic signals found in the previous largest study.

Using this set of 247 loci on non-sex, or autosomal, chromosomes and 40 loci on the X chromosome, the researchers analyzed the remaining 12,000 men for predictive patterns. The results indicated that the predictive value of using this set of gene loci was 0.78 for severe hair loss, 0.68 for moderate hair loss, and 0.61 for slight hair loss. When the subject’s age was added, the predictive score improved to 0.79 for severe hair loss, 0.70 for moderate hair loss, and 0.61 for slight hair loss. Subjects whose individual scores, based on their genetic makeup, were below the mid-point of the range of scores were significantly more likely to have no hair loss than severe hair loss. By contrast, almost 60% of subjects whose individual scores were in the top 10% of the range of scores were moderate to severely bald.

While the predictions were not extraordinarily accurate – the authors characterized the accuracy as “still relatively crude” – they did show a distinct improvement in predictive accuracy over prior studies.

Summary

Hair loss is a serious concern for many people. Research shows that men with extensive hair loss may experience significant psychosocial impacts such as reduced self-image and reduced social interactions. Some studies have associated baldness with increased risk of prostate cancer and heart disease.

Understanding the complex factors that comprise the genetics of hair loss can help physicians potentially customize treatments based on a patient’s genetic profile and their risk of balding. Beyond that, diagnosing the potential severity of hair loss may help doctors get a head start on treating what could be related life-threatening conditions.

With large databases like UK Biobank, researchers can now drill down into this information and develop increasingly clear, highly granular data sets that can identify complex systems and potentially lead to improved treatments.

References

Hagenaars SP, Hill WD, Harris SE, Ritchie SJ, Davies G, Liewald DC, et al. (2017) Genetic prediction of male pattern baldness. PLoS Genet 13(2): e1006594. doi:10.1371/journal.pgen.1006594

Posted by

Q: The last few months my friend and I experimented with andro gel thinking it would make our T levels go up and make our work outs better. We got the andro gel online with no prescription (which I know is really stupid on our behalf). The past couple of months I have been experienced a lot of acne and hair loss. I went to the doctor and confessed and said what I did, and he was very disappointed and lectured me on how dangerous it was and stupid on my behalf – which I totally agree. He told me the rise in testosterone from andro gel contributed to the acceleration of hair thinning and acne. I had mild hair loss prior but the andro gel seem to have accelerated it. The doctor put me on Propecia and gave me some acne cream for the acne. He said the Propecia will undo some of the damage it did for the hair. In your experience, can Propecia reverse some of the damage? I am 28 years old.

A: Your doctor is giving you the right course of action. Testosterone supplements can accelerate hair loss, particularly in those with underlying genetic hair loss. Finasteride 1mg (Propecia) should help you to grow your hair back. You may also want to consider using minoxidil (Rogaine) in addition.

Posted by

Q: Scalp Med is supposed to unclog pores. How does this prevent hair loss? — O.P., Trenton, NJ

A: The active ingredient of Scalp Med is Minoxidil, which will help reverse miniaturization, the process that causes androgenetic hair loss. Hair loss is not caused by clogged pores, so unclogging them will not prevent going bald. Minoxidil, which is also the active ingredient in Rogaine, is over-the-counter so it is a less expensive way to use the active ingredient.

Posted by

Q: I use Nizoral for my dandruff. Does it work for hair loss too? — M.D., Danbury, CT

A: The active ingredient in Nizoral is Ketoconazole. This medication, originally developed to treat fungus infections, has slight anti-androgen action. It is supposed to work in hair loss by inhibiting the action of DHT on hair follicles. Although, in theory, it should be useful for androgenetic hair loss, there have not been conclusive scientific studies to show that it works to treat balding when used as a topical application for balding.

Posted by
Dr. Bernstein on CBS - Eye on NY

Dr. Bernstein was interviewed by Dana Tyler, host of the television program “Eye on New York” on CBS, for the show that aired on April 17th. The wide-ranging interview was the feature in a 9-minute segment on hair transplantation and hair loss.

Below is a partial transcript from the interview.

Hair Loss – Men vs. Women:

DT: How big a problem is it, men versus women? We heard the statistics but is it worse for one group or the other?

RB: It seems to be worse in women emotionally. Statistically it’s obviously more common in men, but the pattern is very different. When men lose their hair they lose it mostly in the front. And they can start in two different patterns. One is in the temples and in the crown or it can just go front to back. That’s called patterned hair loss and it’s pretty obvious. Women have a more diffuse pattern so it would be many years before you even notice it.

DT: What about the influence we hear, if it’s your mother’s father or your mother’s grandfather was bald then therefore, men, you will be. Is there any truth to that?

RB: Like many myths there is a little bit to it. There is a slight predominance coming from the mother’s side of the family. There is something called an androgen receptor gene, that has been found on the X chromosome, which accounts for the slight difference between inheritance from the mother’s side versus the father’s side. But most of the genetics is on the regular chromosomes, called the autosomal chromosomes, which is the same from both sides. So you can get it from either your mother or your father or your uncles or grandparents.

Early Hair Loss:

DT: Age-wise. Are there certain times – I mean, we talked about earlier in the 30s, but some young men it happens earlier.

RB: It seems that when people start to lose their hair early, it has a tendency to be much more severe. So the people who start to thin around 16, 17 usually become very bald. Time is usually on your side if you have hair into your 30s and 40s, [it’s] more likely you’ll have a full head of hair.

Hair Loss in Women:

DT: Speaking about women and the reasons behind women’s hair loss. A little different than for men.

RB: It’s genetic, as with men for the most part, but there are two different systems. Where in men it’s related to androgens directly, which causes the front-to-back pattern, in women they have another enzyme pathway which kind of evens it out and keeps their hairline longer. Also, because women have a tendency to thin all over, their genetic hair loss can be mimicked by other things, such as diseases that cause hair shedding or thinning — so anemia, thyroid disease, medications such as birth control pills — all those things can also contribute to hair loss, and it seems that those factors are much more common in women than in men.

DT: And then in trying to determine if a woman is going through that, because there are more factors is it hard to figure out why there is the hair loss?

RB: It’s a little bit more difficult [in women]. The main thing that you do is to look at the hair diameters. In genetic hair loss the hairs have different diameters. In [conditions] like anemia, or where there is shedding on medication, the hair comes out at its root. Where people think of hair loss as losing hair, most of hair loss is thinning because the hairs are actually thinner in diameter.

Preventing Hair Loss:

DT: Preventing baldness… is there anything that can be done?

RB: There are… But it’s not what you think. It’s not hats and combs.

DT: Fertilizing your head. (laughs)

RB: There are two medications, main medicines. One is Propecia, or the generic term is called finasteride, and what that does is it blocks DHT. And DHT is what causes these hair follicles to gradually miniaturize, or get smaller, and disappear. And the other is Rogaine, which actually stimulates hair follicles directly. Unfortunately, Propecia can’t be used in women because it can cause birth defects during child bearing years and it can also stimulate breast tissue, but it is very effective in men.

DT: So what does a woman do?

RB: Well, Rogaine will help a little bit. Lasers can help a little bit, perhaps not as much as the initial studies have suggested. And then, once you’ve lost your hair, surgical options are available.

Hair Transplantation:

DT: Hair transplants. I know that’s a complicated procedure. And Dr. Max [Gomez] was talking about the art of it, too, when you’re finding someone. Tell me a little bit more…

RB: The main thing in hair transplants is really to determine who is a good candidate. And the interesting thing is that because of the pattern of [hair loss] in men, men usually have a very permanent area on the back and sides of the scalp. So when you move that to the front and top, it will continue to grow. Because women’s hair loss is more diffuse, the back and sides are not always stable. So, when you’re trying to decide if a woman is a good candidate, you have to make sure that the hair, where you get it from, is going to last their lifetime. And only a small percentage of women are really good candidates for that transplant.

The Future of Hair Restoration – Medications & Cloning:

DT: What about the future? Are you optimistic about new options on the horizon?

RB: First of all, new medications are coming out. Latisse is a medication that can grow eyelashes. And we’ve just started studying it in eyebrow hair, and it seems to grow eyebrows as well. There are studies to see if you can grow hair on the scalp. And it certainly will, it’s just whether it’s practical and how well it works. It probably will be of some benefit.

DT: There always is progress, right?

RB: Right. And then [there are] hair transplants where we can take individual follicles rather than having to take a long thin strip, although that still seems to give you the best volume. And then we’re trying to multiply hair. In other words, the limitation of transplants is always that we don’t have [as much] hair as we’d like. So we’re working on cloning. We’re working on multiplying hair that can actually be plucked from the scalp. So that [the original hair] will regenerate, and you then can get the plucked hair to grow into new hair follicles.

For more interviews with Dr. Bernstein, and other media appearances, visit our Bernstein Medical “In The News” section.

Posted by

Robert M. Bernstein, M.D., F.A.A.D., Renowned Hair Transplant Surgeon and Founder of Bernstein Medical – Center for Hair Restoration in New York, is Studying Four Applications of ACell MatriStem™ Extracellular Matrix in a Type of Hair Cloning, Called Hair Multiplication, as well as in Current Hair Restoration Procedures.

New York, NY (PRWEB) March 15, 2011 – Robert M. Bernstein, M.D., F.A.A.D., Clinical Professor of Dermatology at Columbia University in New York and founder of Bernstein Medical – Center for Hair Restoration, has been granted approval by the Western Institutional Review Board (WIRB) to study four different applications of the ACell MatriStem extracellular matrix (ECM) in hair restoration.

Hair Cloning with ACell MatriStemHair Cloningwith ACell MatriStem

Two of the studies include its use in a type of hair cloning, called hair multiplication, where plucked hairs and transected follicular units are induced to generate new hair-producing follicles. The other two areas of study include evaluating the use of the ECM in current hair transplant procedures to enhance hair growth and facilitate wound healing.

Approval by the WIRB allows the researchers to conduct double-blinded, bilateral controlled studies. Controlled studies are the best way to increase the objectivity of the research and insure the validity of the results.

“The medical research we are performing is important because it may lead to hair multiplication as a way to increase a person’s supply of donor hair. In this way, patients would no longer be limited in the amount of hair which can be used in a hair restoration procedure,” said Dr. Bernstein. “Additionally, in the near-term, the extracellular matrix may be able to improve the cosmetic benefit of current hair transplant procedures. We are simultaneously pushing the boundaries of hair cloning methods and follicular unit transplantation.”

Hair multiplication, a variation of what is popularly known as hair cloning, is a procedure where partial hair follicles are stimulated to form whole follicles. These parts can either be from hairs derived from plucking or from follicles which have been purposely cut into sections. Generally, damaged follicular units will stop growing hairs. However, there is anecdotal evidence that an extracellular matrix applied to partial follicles may stimulate whole follicles to grow and, when applied to wounds, may stimulate the body’s cells to heal the damaged tissue.

This new medical research also attempts to show that ACell can improve the healing of wounds created when follicular units are harvested for hair transplant surgery. Currently, in follicular unit hair transplant procedures, a linear scar results when a surgeon incises the patient’s scalp to harvest follicular units. Occasionally, this scar can be stretched, resulting in a less-than favorable cosmetic result. If ECM can induce the wound to heal more completely, the linear scar may be improved. The extracellular matrix may also benefit general hair growth in hair transplantation in that the sites where hair is transplanted, called recipient sites, can be primed with ECM to encourage healthy growth of the hair follicle.

Dr. Bernstein is known world-wide for pioneering the hair restoration procedures of follicular unit transplantation (FUT) and follicular unit extraction (FUE). Follicular units are the naturally-occurring groups of one to four hair follicles which make up scalp hair. These tiny structures are the components which are transplanted in follicular unit hair transplants.

While hair cloning has been of great interest to hair restoration physicians and sufferers of common genetic hair loss, the method by which this can be achieved has yet to be determined. The use of ACell’s extracellular matrix to generate follicles is a promising development in achieving this elusive goal. In addition to the longer term implications of using ECM in hair multiplication, its impact on hair restoration will be more immediate if it can be proven effective when used in current FUT procedures.

About Dr. Robert M. Bernstein:

Dr. Bernstein is a certified dermatologist and pioneer in the field of hair transplant surgery. His landmark medical publications have revolutionized hair transplantation and provide the foundation for techniques used by hair transplant surgeons across five continents. He is respected for his honest and ethical assessment of a patient’s treatment options, exceptional surgical skills, and keen aesthetic sense in hair transplantation. In addition to his many medical publications, Dr. Bernstein has appeared as a hair loss or hair transplantation expert on The Oprah Winfrey Show, The Dr. Oz Show, Good Morning America, The Today Show, The Discovery Channel, CBS News, Fox News, and National Public Radio; and he has been interviewed for articles in GQ Magazine, Men’s Health, Vogue, the New York Times, and others.

About Bernstein Medical – Center for Hair Restoration:

Bernstein Medical – Center for Hair Restoration is a state-of-the-art hair restoration facility and international referral center, located in midtown Manhattan, New York City. The center is dedicated to the diagnosis and treatment of hair loss in men and women. Hair transplant surgery, hair repair surgery, and eyebrow transplant surgery are performed using the follicular unit transplant (FUT) and follicular unit extraction (FUE) surgical hair restoration techniques.

Contact Bernstein Medical – Center for Hair Restoration:

If you are a journalist and would like to discuss this press release, please email us or call us today (212-826-2400) to schedule an appointment to speak with Dr. Bernstein.

View the press release at PRWeb.

Posted by

Q: There was a retrospective study by Lotufo et al. linking male pattern baldness to heart disease. Do you think there are other links like this for androgenetic alopecia? — J.L., San Francisco, CA

A: Family studies revealed both the androgen receptor locus on the X chromosome, as well as a new locus on chromosome 3q26. Association studies performed in two independent groups revealed a locus on chromosome 20 (not near any known genes) as well as the androgen receptor on the X chromosome.

So far, the genetic studies for androgenetic alopecia (AGA) have not revealed identification of a particular gene other than the androgen receptor, as well as the two candidate regions on chromosomes 3 and 20. Inasmuch as the androgen receptor can be involved in other diseases, this might be a feasible connection. Until candidate genes are identified that underlie AGA, it is impossible to predict where the commonalities might lie.

Excerpted from Angela Christiano, Hair Transplant Forum International 2011; 21(1): 14-15.

Read more about Hair Loss Genetics, and see some other Hair Restoration Answers posts on the topic.

Posted by

CBS News - Hey, Baldy: 10 Things You Need to Know about Hair LossCBS News has enlisted the help of Dr. Bernstein in dispelling a series of myths which circulate in the general public about the causes and treatments of hair loss. The feature is titled, Hey, Baldy: 10 Things You Need to Know about Hair Loss.

Horseradish and pigeon droppings. That’s the magic hair-growth potion prescribed by Hippocrates. Alas, there are so many myths about hair loss that folks today are almost as clueless as the father of medicine.

Keep reading as hair loss expert Dr. Robert Bernstein, clinical professor of dermatology at Columbia University, explodes 10 all-too-common follicle fallacies…

Do hair loss genes come from the father’s side or the mother’s? Do bald men just have more testosterone in their system? Do women experience hair loss? Find Dr. Bernstein’s answers to these questions at the CBS News feature.

Visit our hair loss section where Dr. Bernstein debunks more hair loss myths.

Posted by

Dr. Christiano Interviewed on Alopecia, Hair Loss by New York TimesDr. Angela Christiano, a colleague of Dr. Bernstein’s at Columbia University, has been studying the causes of alopecia areata and genetic hair loss for many years. She, in fact, suffers from the disease as well.

The New York Times has published a question and answer interview with Dr. Christiano which covers her own struggle with alopecia, her research into the causes of genetic hair loss, and where she sees the field going in the future. Here is one exchange that offers a window into how her research is breaking new ground in the field of hair loss genetics:

Q. When were you able to actually do the study?

A. In 2008. We published our findings this past July. Ours was the first study of alopecia to use a genome-wide approach. By checking the DNA of 1,000 alopecia patients against a control group of 1,000 without it, we identified 139 markers for the disease across the genome.

We also found a big surprise. For years, people thought that alopecia was probably the stepchild of autoimmune skin diseases like psoriasis and vitiligo. The astonishing news is that it shares virtually no genes with those. It’s actually linked to rheumatoid arthritis, diabetes 1 and celiac disease.

Continued discovery by Dr. Christiano and others in the field of hair loss genetics will lead to clues like these, which will shape the future of hair loss treatment. The hope for hair loss sufferers around the world is that a medical treatment can be developed which will effectively cure androgenetic alopecia, or common baldness. There is a lot of ground to be covered and there are many studies yet to be conducted, but progress is being made.

You can read more about Dr. Christiano’s research on our Hair Loss Genetics News page.

Read the article and listen to a two minute audio stream of the interview at the NYT.

Photo c/o Ruth Fremson/The New York Times

Posted by

Q: I am currently taking Avodart and have done so for around 8 months. Last night I had a significant loss of hair after taking a shower, nothing like I have ever seen before and found it very distressing. Can you tell me if this is hair loss or could it be something known as shedding and could you please tell me what is the difference between hair loss and hair shedding? — M.S., New York, NY

A: Hair loss is a very general term that can refer loss of hair for any reason. Genetic hair loss is caused by the effects of DHT on hair follicles that result in miniaturization -– i.e. a slowly progressive change in hair diameter that starts with visible thinning and that may gradually end in complete baldness. Hair shedding is more sudden where hair falls out due to a rapid shift of hair from its growth phase into the resting phase. The medical term for this is telogen effluvium. This process is usually reversible when the offending problem is stopped. It can be due to stress, medication, or other issues. You should see a dermatologist to figure out which process is going on. Dutasteride can cause some shedding when it first starts to work, but it would be unusual to do this after being on treatment for eight months.

Read more about the Causes of Hair Loss in Men, view our Hair Loss Glossary, or read more about Avodart Hair Loss Medication.

Posted by

Dr. Angela Christiano of Columbia University in New York and a team of scientific researchers have identified a new gene involved in hair growth. Their discovery may affect the direction of future research for hair loss and the diagnosis and ultimate prevention of male pattern baldness.

The condition which leads to thinning hair is called hereditary hypotrichosis simplex. Through the study of families in Pakistan and Italy who suffer from this condition, the team was able to identify a mutation of the APCDD1 gene located in chromosome 18. This chromosome has been linked to other causes of hair loss.

According to Dr. Christiano, “The identification of this gene underlying hereditary hypotrichosis simplex has afforded us an opportunity to gain insight into the process of hair follicle miniaturization, which is most commonly observed in male pattern hair loss or androgenetic alopecia.”

The mutation of the APCDD1 gene inhibits the Wnt signaling pathway. Although this recently discovered gene does not explain the complex process of male pattern baldness, the importance of this discovery lies in the Wnt signaling that the gene directs, has now been shown to control hair growth in humans, as well as in mice.

Reference: Nature 464, 1043-1047 (15 April 2010) | doi:10.1038/nature08875;

Posted by

Q: I’ve been losing my hair just around the front of my scalp for years, but now it’s bad enough that I need to wear a wig to hide the top and back. Do you transplant women?

A: If you have thinning in such a broad area, most likely your donor area is also thin and you would not be a good candidate for surgery.

An examination can determine this and also determine if there is some other cause of your hair loss other than genetics.

Posted by

Q: Why do some people have a full head of hair into their seventies or eighties and others start to go bald in their late teens or early twenties? — E.Z., Darien, CT

A: The difference is genetic with the inheritance coming from either side of the family.

Although a person will have the genes his/her whole life, a gene’s expression (also called phenotype) can be quite variable. The factors that cause this variability are still unknown.

Read more about the Genetics of Hair Loss

Posted by

Most medical conditions can best be addressed with early diagnosis. Genetic hair loss is no different. A test now has the ability to identify whether or not you may be genetically predisposed to hereditary male pattern baldness (Androgenetic Alopecia).

The HairDX genetic test offers information that can aid you and your doctor in making an informed decision about the treatment of your hair loss.

This test is not a substitute for an examination by a physician experienced in the diagnosis and treatment of hair loss. It offers one more bit of information that, in the context of other data (such as hair loss pattern, scalp miniaturization and family history) can help guide you and your doctor to formulate an appropriate treatment plan.

How does this test work?

This new genetic test examines genetic variables (SNP) which are responsible for recognizing Androgen hormones in our bodies. These specific genetic variants of the X chromosome (the Androgen Receptor or AR gene) are found in 95-98% of bald men.

These genetic differences are associated with Male Pattern Baldness (MPB) and by identifying them; the onset of MPB might be better predicted. If a person is predisposed genetically to these chromosomal variations, they may be more likely to develop male pattern baldness prior to age forty.

The test consists of a simple swab of the inside of your mouth. The skin cells are then sent to the HairDX clinical laboratory for a confidential analysis.

How accurate is the test in predicting baldness?

HairDX tests for a genetic variant of a gene (the androgen receptor gene) found on the X-chromosome that is present in more than 95% of bald men. Sixty percent of patients with this variant experience male pattern baldness before the age of 40. Therefore, if a person has this gene, they would have an increased risk of significant pattern baldness.

Another, less common genetic variant of the same gene (present in about 1 in 6 men) indicates a greater then 85% likelihood that a person will not experience early onset pattern baldness. If a person is found to have this gene, they are unlikely to become very bald.

Why is the genetic test not 100%?

The androgen receptor gene identified thus far is only one of a number of genes that affect hair loss.

How does the test compare to information obtained from a history and physical exam by your physician?

An assessment of scalp miniaturization by an experienced physician using a densitometer, combined with a history and physical, appears to be a far more reliable way of predicting future hair loss. The genetic test can complement this information, but does not replace it.

Posted by

Q: What are the genes that cause male pattern baldness?

A: At this time the genes that actually cause hair loss are still unknown. However, there are two gene loci, recently identified, that appear to be associated with common baldness. The first is on the Androgen Receptor (AR) gene carried on the x-chromosome and the second is a non-sex chromosome 20p11.

Posted by

Q: I have hair loss due to a treatment of Accutane. I have been off this medication for about a year and a half now, yet my hair has not recovered. The texture of my hair has completely changed. Given the fact that there is no family history linking me to male pattern baldness, I attribute my hair loss exclusively to Accutane. What should I do? — H.F., Eastchester, NY

A: If the texture alone has changed there is nothing you can do except to wait. The texture should improve over time even though it has already been 18 months.

If there are signs of genetic hair loss (i.e. male pattern alopecia), then finasteride should be considered.

Posted by

Q: I have thinning hair and have heard about Low Level Laser Therapy (LLLT) for hair loss. I know that I can either buy a machine over the internet or go to a doctor’s office or medical spa for treatments. Which one should I do?

A: The advantage of the in-office LLLT systems are that the units are more powerful and that the delivery of the energy is the same each time. The treatment is also not dependent upon the patient having to remember to do the treatment and does not require the person to spend 15 minutes each time concentrating on using the hand-held machine correctly. It also had the important advantage of requiring an initial evaluation by a physician who can diagnosis the hair loss and make sure that it is the genetic type that may respond to this type of therapy. And the effectiveness of the treatment can more readily be monitored over time.

The disadvantage of the office- or medispa- based system is that the treatments are significantly more costly than the home machine and require periodic visits over an extended period of time – a nuisance for working people, or for those who do not live close to a facility offering this service.

The advantage of the hand-held system is that it is much less expensive than the office based machine and it is much more convenient to do the treatment at home than to go to a doctor’s office several times a week. There may also be a potential advantage for patients that still have a significant amount of hair. In these people, the hand-held system (that is able to part the hair) may allow the laser light to more effectively reach the scalp.

The major disadvantage of the hand-held device seems to be with patient compliance as people get tired of having to run the instrument through their hair for 15 minutes several times a week. It is also hard for the person himself to judge if the treatments are working, how to taper the treatments and if, and when, to stop.

Read more about Laser Therapy

Posted by

Q: I’ve been dealing with daily mental stress for the past few months. I’ve noticed that during that time, I’ve experienced a lot of frontal hair loss and thinning. I thought stress was a myth for causing hair loss. — R.P., Upper East Side, Manhattan

A: Stress may cause temporary shedding, but it generally does not affect the long-term course of genetic hair loss.

It seems that women’s hair is affected by stress more commonly than men’s hair, but the reason is not clear.

Posted by

Q: I have read that in the evaluation of a patient for hair restoration surgery some doctors use a densitometer to measure miniaturization – the decrease in size of hair diameters. I read that miniaturization is a sign of genetic hair loss, but when there is miniaturization of greater than 20% in the donor area, a person may not be a good candidate for hair transplants. Is this correct and does 20% miniaturization mean that 20% of the population of terminal hairs have become fine vellus-like hairs or that there is a 20% decrease in the actual diameter of each of the terminal hairs? — B.A., New Albany, Ohio

A: Miniaturization is the decrease in hair shaft length and diameter that results from the action of DHT on healthy, full thickness terminal hairs. The hairs eventually become so small that they resemble the fine, vellus hair normally present in small numbers on the scalp and body. Miniaturized hairs have little cosmetic value. Eventually miniaturized hairs will totally disappear. Twenty percent miniaturization refers to the observation, under densitometry, that 20% of the hairs in an area show some degree of decreased diameter.

In the evaluation of candidates for hair transplantation, we use the 20% as a rough guide to include all hairs that are not full thickness terminal hairs. Of course we are most interested in the presence of intermediate diameter hairs — i.e. those whose diameters are somewhere between terminal and vellus and are clearly the result of DHT. I don’t know if one can tell the difference on densitometry between vellus hairs, fully miniaturized hairs and senile alopecia. The partially miniaturized population is most revealing.

Miniaturization in the recipient scalp (i.e. the balding areas on the front top and crown that we perform hair transplants into) is present in everyone with androgenetic hair loss. Miniaturization in the donor area, however, is less common (in men). It means that the donor area is not stable and will not be permanent. Men with more than 20% of the hair in the donor area showing miniaturization are generally not good candidates for hair transplant surgery.

Read about Miniaturization
Read about Candidacy for Hair Transplant Surgery

Posted by

Q: I seem to be thinning, but I never shed hair as such in the shower. I cannot see my hair falling out. Can it be androgenetic hair loss? — R.C., Cambridge, MA

A: In androgenetic hair loss one rarely sees hair falling out in mass, but rather the thinning is due to the hair decreasing in diameter and length (a process called “miniaturization”).

Posted by

Q: The makers of the HairMax LaserComb have claimed that it will “revolutionize the hair growth industry.” What do you think?

A: This claim is obviously overstated.

Since the Low Level Laser Therapy (LLLT) doesn’t affect the action of DHT on hair follicles, it doesn’t affect the underlying cause of genetic hair loss, and thus would be expected only to have limited effectiveness. The company’s own studies show that this is, indeed, the case.

It was also predicted that Rogaine would revolutionize the field of hair restoration and it had little impact.

In my opinion, only finasteride has made a significant impact on the long-term course of hair loss, particularly in its ability to postpone the need for surgical intervention such as hair transplants.

Posted by

Q: I believe I am an “early” IIIA or IVA. I am not losing any hair on the back of the scalp. There is no substantial hereditary hair loss on either side of the family, but I began taking Propecia four months ago and recently noticed a dramatic thinning of hair on the top (front) of the scalp, extending back to the rear of the head. — B.M., Lower East Side, N.Y.

A: Often people experience some shedding the first six months on finasteride as the new hair essentially pushes out some of the old. I would wait a full year before making any judgments about a hair transplant since you may see significant regrowth from finasteride in the second six months and may not need surgery at this point, particularly if the hair loss is early.

Posted by

Q: I had a baby 12 weeks ago and have recently been diagnosed with a hyperactive thyroid, although only slightly. I was also taking Prozac for 7-10 days. I am 27 and have been experiencing a significant amount of hair loss from all over my scalp. What are the chances that this would be permanent?

A: Based upon your history, you have three possible reasons for having a type of hair loss called telogen effluvium; thyroid disease, medication induced (Prozac) and pregnancy.

Telogen effluvium is diagnosed by a hair pull test and observing club hairs under the microscope. It is generally a reversible condition, regardless of the cause. Telogen effluvium most often occurs 2-3 months after the inducing event, so your pregnancy is the most likely cause. Prozac would less likely be the problem since you have only been on it for a short time. Besides causing Telogen effluvium, thyroid disease can also alter your hair characteristics, which can make your hair appear thinner.

Other causes of hair loss, such as genetic female pattern hair alopecia, must be ruled out. Please see the Hair Loss in Women page on the Bernstein Medical – Center for Hair Restoration website for more information.

Posted by

Q: Why should a doctor measure miniaturization in the donor area before recommending a hair transplant? — E.B., Key West, F.L.

A: Normally, the donor area contains hairs of very uniform diameter (called terminal hairs). In androgenetic hair loss, the action of DHT causes some of these terminal hairs to decrease in diameter and in length until they eventually disappear (a process referred to as “miniaturization“). These changes are seen initially as thinning and eventually lead to complete baldness in the involved areas.

These changes affect the areas that normally bald in genetic hair loss, namely the front and top of the scalp and the crown. However, miniaturization can also affect the donor or permanent regions of the scalp (where the hair is taken from during a hair transplant). If the donor area shows thinning, particularly when a person is young, then a hair transplant will not be successful because the transplanted hair would continue to thin in the new area and eventually disappear. It is important to realize that just because hair is transplanted to another area, that doesn’t make it permanent – it must have been permanent in the area of the scalp it initially came from.

Unfortunately, in its early stages, miniaturization cannot be seen with the naked eye. To detect early miniaturization a doctor must use a densitometer, or an equivalent instrument, that magnifies the surface of the scalp at least 20-30 times. This enables the doctor to see early changes in the diameter of the hairs that are characteristic of miniaturization. If hairs of varying diameter are noted (besides the very fine vellous hairs that normally occur in the scalp), it means that the hair is being affected by DHT and the donor area is not truly permanent.

In this situation, a person should not be scheduled for hair transplantation. If the densitometry reading is not clear, i.e. the changes are subtle and the doctor is not sure, then the decision to have surgery should be postponed. By waiting a few years, it will be easier to tell if the donor area is stable. Having surgery when the donor area is miniaturizing can be a major problem for a patient, since not only will the transplanted hair eventually disappear, but the scar(s) in the donor may eventually become visible. This problem will occur with both follicular unit transplantation (FUT) and follicular unit extraction (FUE).

Posted by

Q: Can stress accelerate hair loss? I am 25 and there is balding on my dad’s side of the family. I never had any thinning or hair loss till this year. I guess you can say I’ve been under a lot of stress. When I did notice shortly after my 25th birthday I started stressing even more, which led to more hair loss. It is thinner up front and it is thin on top. I have heard of some hair docs mapping your head for miniaturization, do you do this too? — E.W., Miami, FL

A: Yes. The presence of miniaturization (decreased hair diameter) in the areas of thinning allows us to distinguish between hair loss due to heredity (i.e. androgenetic alopecia) — in which hair progressively decreases in diameter under the influence of DHT — and other causes. The degree of miniaturization can be assessed using a hand-held instrument called a densitometer.

The pattern of hair loss and the family history are also important in the diagnosis.

Stress more commonly produces telogen effluvium, a generalized shedding that is not associated with miniaturization and is often reversible without treatment.

Posted by

Q: Over the past three months, my hair seems to be thinning more on one side. Is it common in male pattern hair loss for it to be more on one side? I had a lot of stress about three months ago and have heard that this could be the cause. Is this possible? Should I use Rogaine to treat it? — B.R., Landover, MD

A: Regardless of the cause, hair loss is usually not perfectly symmetric. This applies to male pattern hair loss as well.

In your case, it is important to distinguish between telogen effluvium (shedding that can be due to stress) and hereditary or common baldness. The three month interval from the stressful period to the onset of hair loss is characteristic telogen effluvium, but you may have androgenetic alopecia as an underlying problem.

The two conditions are differentiated by identifying club hairs in telogen effluvium and miniaturized hair in androgenetic alopecia. In addition, a hair pull will be positive in telogen effluvium (when a clump of hair is grasped with the fingers, more than five hairs pull out of the scalp at one time) and will be negative in common baldness. The hair loss diagnosis can be made by a dermatologist.

Hair cuts do not affect either condition.

Rogaine (Minoxidil) is only effective in androgenetic hair loss and only marginally so. Finasteride is the preferred treatment if your hair loss is genetic when it is early and a hair transplant may be indicated if the hair loss progresses.

Shedding from telogen effluvium is reversible and does not require specific treatment.

Posted by

Q: Dr. Bernstein, I was reading about a densitometer on your website. What is it and what is it actually used for? — Z.A., Westchester, NY

A: The hair densitometer was introduced to hair restoration surgeons by Dr. Rassman in 1993. It is a small, portable, instrument that has a magnifying lens and an opening of 10mm2.

To use it, the doctor clips the hair short (~ 1-mm) and the instrument is then placed on the scalp. The doctor counts the total number of hairs in the field, looks at the number of hairs per follicular unit and assesses the diameter of the hair, looking in particular for abnormal levels of miniaturization (decreased hair shaft diameter caused by the effects of DHT).

The densitometer can increase the accuracy of the diagnosis of genetic hair loss by picking up early miniaturization.

It can also better assess a person’s donor hair supply, thus helping to determine which patients are candidates for a hair transplant.

Densitometry has helped us define the conditions of diffuse patterned and unpatterned hair loss (DPA and DUPA) and help to refine the diagnosis of hair loss in women.

Posted by

Hair transplant surgeon Robert M. Bernstein M.D. was recently interviewed on the National Public Radio program The People’s Pharmacy. Invited to speak about hair loss, Dr. Bernstein offered insights about the causes of hereditary baldness and it’s solutions, including hair transplantation.

The show was entitled “Dealing with Hair Loss” and addressed issues such as the importance of hair to our sense of well being.

The full hour radio interview was filled with informative facts about male pattern baldness, cultural attitudes toward hair loss and surgical hair restoration. For example, Dr. Bernstein was asked about his pioneering work in follicular unit hair transplantation and host of other questions ranging from the causes of hair loss to the psychological effects of balding. Here is one exchange from the interview:

Moderator: How one can tell the difference between hair loss from hormonal imbalances and common baldness?

Dr. Bernstein: Measuring hormone levels alone, although important for medical management, does not necessarily reveal whether the cause of the hair loss is actually hormone related or is genetic. The diagnosis is made by examining the scalp and looking at the hair under close magnification using an instrument called a “Densitometer.” If the hair shafts are of different calibers, this is relatively diagnostic of female patterned genetic hair loss and in this case hormone levels are often normal. Hormonal changes or imbalances, on the other hand, may cause alterations in hair texture (such as in thyroid disease) or a generalized shedding that can occur after childbirth (called telogen effluvium). In telogen effluvium, the hair can l actually fall out in clumps – you can literally get handfuls of hair, but the hair often returns over time. In genetic hair loss, however, it is not a question of the hair falling out any faster, but the hair being replaced with thinner, finer hair in each hair cycle, until the hair gradually disappears.

Posted by

Q: I am 19 years old and seem to be thinning all over, including the sides. My father has all of his hair but my grandfather is totally bald. Should I have a hair transplant now or wait until I am older? — T.K., Garden City, NY

A: Most likely you have a type of androgenetic alopecia called Diffuse Unpatterned Alopecia (DUPA). In this hereditary condition, hair thins all over rather than just on the front, top and back as in the more common male pattern baldness. The fact that the back and sides of your scalp are thinning (the donor area) precludes you from being a candidate for surgery. The diagnosis can be made by observing a high degree of miniaturization (fine hair) in the donor area under a magnifier. This instrument is called a densitometer.

For further information, please read the article:

Bernstein RM, Rassman WR: Follicular Transplantation: Patient Evaluation and Surgical Planning, published in the journal Dermatologic Surgery in 1997. Specifically, read the last part of the article.

Posted by

Q: What is “shock fall out”? – D.B., Chappaqua, N.Y.

A: Shedding after a hair transplant is also referred to by the very ominous sounding term “shock fall out.” The correct medical term is “effluvium” which literally means shedding. It is usually the miniaturized hair (i.e. the hair that is at the end of its lifespan due to genetic balding) that is most likely to be shed. Less likely, some healthy hair will be shed, but this should re-grow.

Interestingly, if transplants are spaced less than one year apart, one often notices some shedding of the hair from the first transplant, but this hair grows back completely. For most patients, effluvium is not a major issue and should not be a cause for concern.

Typically, when shedding occurs, a patient looks a little thinner during the several month period following the transplant, before the transplanted hair has started to grow. The thinning is often more noticeable to the patient than to others. Shedding is generally noted as a thinning, rather than of “masses of hair falling out,” as the term “shock fall out” erroneously suggests.

In general, the more miniaturization one has and the more rapid the hair loss, the more likely shedding will be from the hair restoration surgery. Young, actively balding patients would be at the greatest risk. Older patients with stable hair loss would have the least risk. In either situation, since miniaturized hair is eventually going to be lost, the effluvium has no long-term effect on the outcome of the procedure.

It is important to differentiate the phenomena described above from shedding of the hair in the graft. This shedding is an almost universal characteristic of a hair transplant and occurs because during a hair transplant a graft is temporarily stripped of its blood supply. As a response to this insult, the graft sheds its hair. This shedding is generally noted beginning a week following the procedure and can continue for up to six weeks. A very small percentage of patients do not shed and the transplanted hair continues to grow. In others, the transplanted hair remains on the scalp for months until a new hair pushes it out. Whether a patient sheds or not has no bearing on the outcome of the hair restoration.

There are a number of ways to minimize the effects of post-operative shedding: the first is using medication, the second is timing the transplant properly, and the third is performing a procedure using a sufficient number of grafts.

• Medication

Finasteride 1mg reverses or halts the miniaturization process in many individuals and is thus the logical way to decrease the risk of shedding following a transplant. Although many physicians have had the clinical impression that this assumption is correct, there has been no controlled studies to date that prove this.

• Timing and the size of the transplant

It is important to wait until a patient is ready to have a transplant, and then to perform one of sufficient size so that if there is some shedding, the procedure will more than compensate for it – and thus be worthwhile. A problem that patients often run into is that they present to their doctor with early hair loss but with a significant amount of miniaturization. The doctor performs a small procedure and it does not even compensate either for potential shedding or for progression of the hair loss. The result is that the patient is thinner (or more bald) than he was before the procedure. The doctor rarely blames the problem on the fact that the procedure was too small or that the miniaturization was not taken into account, but only that the patient continued to bald. The better solution is to treat early hair loss with medication, but once you make a decision to begin surgery, have a procedure large enough to make a significant cosmetic improvement.

• Performing the procedure using a sufficient number of grafts

As a final point, it is a fallacy that some doctors’ techniques are so impeccable that they can avoid effluvium or those “small” procedures will avoid shedding. Of course, bad techniques and rough handling will maximize effluvium, but effluvium is what hair naturally does when the scalp is stressed and it is stressed during a transplant from the anesthetic mixture and the recipient site creation. It is important to note that it cannot be totally prevented. Despite claims to the contrary, Follicular Unit Extraction has no bearing on this process as it is a harvesting rather than a placing technique.

In sum, the best way to deal with effluvium is:

  • Treat with Finasteride — the active chemical in the hair loss drug Propecia — when hair loss is early
  • Perform a hair transplant only when indicated
  • Perform a hair transplant with skill and using a sufficient number of grafts
Posted by

Q: This is my second hair transplant and is seems like it is growing more slowly than my first. Is this normal? – J.D., Port Washington, N.Y.

A: It is common for a second hair transplant to take a bit longer to grow than the first, so this should be expected. It is also possible that there is some shedding from the procedure, or a continuation of your genetic hair loss.

Propecia may be helpful in this regard. It is important to wait at least a year for the transplant to grow in fully and to give a chance for any hair that was shed to regrow.

Posted by

Dr. Bernstein summarizes an article in the Journal of the National Cancer Institute:

Curis, Inc., a drug development company, has published data showing the effectiveness of a proprietary Hedgehog pathway activator to stimulate hair growth in adult mice. The study shows that a topically applied small molecule agonist of the Hedgehog signaling pathway can stimulate hair follicles to pass from the resting stage to the growth stage of the hair cycle. The Hedgehog agonist produces no other noticeable short or long-term changes in the skin of the mice.

This study also demonstrated that the Hedgehog agonist is active in human scalp in vitro as measured by Hedgehog pathway gene expression. The results suggest that topical application of a Hedgehog agonist could be effective in treating hair loss conditions, including male and female pattern genetic hair loss.

Preliminary results were presented at the American Academy of Dermatology (AAD) in February 2005. This work was based on a study in 2001 by Sato et. Al. who showed that the Sonic hedgehog gene is involved in the initiation of hair growth in mice.

Reference: Sato N., Leopold PL, Crystal, RG. Effect of Adenovirus-Mediated Expression of Sonic Hedgehog Gene on Hair Regrowth in Mice With Chemotherapy-Induced Alopecia. Journal of the National Cancer Institute, 2001, Vol. 93, No. 24.

Posted by

The highly-rated CBS television program “The Early Show” interviewed Dr. Bernstein as part of a three-part series on hair loss in women. View a clip of the video here:

Watch the video at YouTube or go to the Bernstein Medical YouTube Channel to see more videos on hair loss in women and other hair restoration topics.

Read the full transcript here:

Julie Chen: There are many treatments available for serious hair loss including surgical options like hair transplants. That may sound scary, but for one woman, it was the answer she’d been waiting for.

Narrator: Marian Malloy is used to being in control. As the duty manager for an international terminal at Newark Airport, it’s her job. But Marian wasn’t always so self-confident. Due to a condition called alopecia areata, Marian began losing her hair back in college.

Marian Malloy: I was on my own for the very first time and I was learning about life and learning about my hair loss. And it just devastated me. So I started out picking out methods to improve my hairline. Initially, I went to a dermatologists who put me on a prescription of injections, actually. I would go over weekly and he injected my head, and I got results, but I also started growing facial hair, which wasn’t something that I wanted. After that, I decided to start with the Rogaine and once again I saw results, but Rogaine was something that I had to do every day for the rest of my life, and I just didn’t want to be that dependent on a medication.

Narrator: Marian continued to search for an acceptable treatment to her condition, even trying hair plugs, until she heard about Dr. Robert Bernstein’s new method of Follicular Unit Transplantation, or in layman’s terms, a hair transplant.

Marian Malloy: I wasn’t scared at all. I was desperate, so that overrode everything.

Julie Chen: Marian Malloy is here along with her hair transplant surgeon, Dr. Robert Bernstein, to help us look at some of the medical options that are available to women suffering from this affliction.

Good morning to both of you.

Dr. Bernstein: Good morning.

Marian Malloy: Good morning.

Julie Chen: Marian, thank you for speaking out about this very private problem. How has your life changed since getting the hair transplant?

Marian Malloy: Well, I just feel better about my appearance, and appearance is very important to me in my line of work. I just feel a lot better and I think I look better. My hairline looks better.

Julie Chen: Boost in the self-confidence department?

Marian Malloy: Actually, yes.

Julie Chen: And your friends and family see a difference in it?

Marian Malloy: You know, my friends and family really didn’t notice a difference before, and they thought I was crazy for harping on it the way that I did.

Julie Chen: But if you see it, that’s all that —

Marian Malloy: And it was all about me. It’s not about my family and friends. It’s about how I feel.

Julie Chen: Right.

Marian Malloy: Yes.

Julie Chen: Dr. Bernstein, I want to go through all the options that are available for women, but what is the difference between female and male hair loss option-wise. What can we do to treat it?

Dr. Bernstein: The main difference medically is that women have hair loss often from hormonal changes and it’s due to an imbalance between progesterones and estrogens. That equilibrium can be reestablished with medication. Often birth control pills can do that.

Julie Chen: So that’s one option.

Dr. Bernstein: One option. For the most common cause of hair loss, genetic hair loss, Minoxidil can be used for both men and women, but the most effective medication for men, Propecia, can’t be used in women. And the reason –

Julie Chen: Why not?

Dr. Bernstein: The reason is that it causes birth defects if taken during pregnancy and postmenopausally it doesn’t seem to work.

Julie Chen: Oh, okay. So talk to me about Minoxidil, also known as Rogaine .Just as successful for women as in men?

Dr. Bernstein: It seems to be similarly successful, but the success rate is not very good, and one of the problems with its use in women is that you can get hair at the hairline on the forehead. So the usefulness is a little bit limited.

Julie Chen: So is it promoting hair growth if it does work, the Rogaine, or is it just making your existing hair grow in thicker? I’ve heard both.

Dr. Bernstein: It actually stimulates the growth of existing hair.

Julie Chen: Okay so you got to be really careful topically what you touch after you’re rubbing it into your scalp.

Dr. Bernstein: Yes.

Julie Chen: Another option is topical Cortisone and Cortisone injection.

Dr. Bernstein: Yes many people think that Cortisone can be used for genetic hair loss or common hair loss and it really can’t. It’s a good treatment for specific types of diseases, the most common one is alopecia areata. In that condition, the body actually fights off its own hair follicles. And then the Cortisone is used to suppress the immune system and actually allows the body to permit the hair to grow back.

Julie Chen: Now, Marian tried these options that we’re talking about. You weren’t satisfied, so you had a hair transplant.

Marian Malloy: Yes.

Julie Chen: Describe exactly what you did for Marian.

Dr. Bernstein: In the past, hair transplantation was not a good option for women because hair was transplanted in little clumps. With Follicular Unit Transplantation, we can now transplant hair exactly the way it grows, which is in little tiny bundles of one to four hairs. With Marian we took a strip from the back of her head, in other words, right from the back of the scalp where you can’t see it.

Julie Chen: Where there’s more hair?

Dr. Bernstein: Yes, we remove that strip and place it under a microscope and dissect out the individual follicular units – the hair is transplanted exactly the way it grows in nature. And that hair is then put in needle-poke incisions all along the hairline, and because the grafts are so small, you can actually mimic the swirls and the change in hair direction exactly the way the hair grows naturally.

Julie Chen: And it stays?

Dr. Bernstein: Yes, it stays. We make a very snug fit between the graft and the needle-poke incision. And so it really holds on to the grafts well. In fact, the patients can shower the next morning.

Julie Chen: The next morning? Marian, what was your experience like having this hair transplant? No problems since?

Marian Malloy: No problems, absolutely no problems.

Julie Chen: Did insurance cover any of this?

Marian Malloy: No, absolutely not.

Julie Chen: How costly is this?

Dr. Bernstein: The average procedure is about $7,000.

Julie Chen: And it’s one procedure and you’re done?

Dr. Bernstein: Usually one to two procedures.

Julie Chen: $7,000 a pop. Well, you found it was worth your money, is that right, Marian?

Marian Malloy: Absolutely, yes.

Julie Chen: Dr. Bernstein, Marian Malloy, thank you both for coming on the show talking about this.

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top

Learn more about hair restoration

Hair loss has a variety of causes. Diagnosis and treatment is best determined by a board-certified dermatologist. We offer both in-person and online photo consults.

Provide your email to learn more.